
Text Analysis with R
24 March 2022

Dani Madrid-Morales

Installing packages, and setting the enrvironment up

The goal of this lab is to learn how to load different types of texts to quanteda, transform them into a corpus,
clean them, re-shape them, describe them, and create simple visualizations.

For this lab session, we will use a dataset that includes a random sample of news stories published by two
English-language news organizations from North Korea: the Korean Central News Agency (KCNA) and the
Pyongyang Times (PT). The goal for today’s lab is to answer two research questions:
1. What are the most frequently used words in news stories by KCNA and PT between 1997 and 2014?
2. Are there differences in the words used by KCNA and PT in news stories mentioning Russia and Japan?

Part 1 - Importing some documents and creating a corpus with some additional metadata

There are commonly seven steps in any computational text analysis project:
1. Selecting texts and defining a corpus. [part 1]
2. Converting the texts into a common format. [part 1]
3. Deciding the documentary unit. [part 1]
4. Defining and refining the features. [part 2]
5. Converting features to a quantitative matrix. [part 3]
6. Extracting information from the matrix statistically. [part 4]
7. Summarizing & interpreting the results. [part 4]

My goal with this lab is to cover the whole process in four parts, so that you get a sense of how easy it is to
do basic descriptive text analysis with quanteda, but also to highlight that many of the steps involve quite a
bit of human involvement and, therefore, often require us to go through different rounds of trial and error.

Steps 1 & 2: selecting texts, defining a corpus and converting them to a common format Using
the readtext package is probably the most convenient way to import texts into R to create a corpus. It was
developed by the same team that developed quanteda, and therefore the package is able to handle multiple
situations, such as reading text stored in rows in Excel and csv format, or to read files such as docx and pdf
(as long as the pdf file has ben OCRed first).

I’d like to show you two common approaches in importing data:
1. Reading a CSV file that has one column that stores each text in one row, and has additional columns with
“metadata” (i.e. additional information about each file, such as the author, the date. . . ).
2. Reading text from a folder with lots of files, where each file has one text, and the filename includes the
mmetadata.

You can read how to handle other situations in the documentation of the readtext package.

Let’s start with the simpler approach: importing data from a csv file. readtext has a single function,
readtext that requires us to specify the name of the column in the csv file that has the text data. In our
case, it is the TXcolumn.

The resulting object is a readtext object with four variables: text, a new variable called docid which will
be used by quanteda to identify each text in our dataset, and the two additional variables (metadata) that
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were included in the original final. In quanteda speak, we will call metadata (the additional information
about each text) docvars. Docvars are very useful, as they allows us to separate the corpus (or group it)
according to some theoretically-driven characteristics of our data.

Data from The Pyongyang Times (PT) is stored in a folder called “PT”. Each article is saved as a txt file, and
the filename includes the docvars we neeed (date and source). This is a scenario that readtext can handle
rather easily: it reads each file in the folder and identifies the variables from the file name automatically
“2005-08-29_PT_143.txt”. All we need to specificy are the names of each variable.
df_pt <- readtext(file = "data/PT/", # We pass the name of the folder that has the files

docvarsfrom = "filename", # Refer to th filename to find the docvars
docvarnames = c("DE", "SC", "NU")) # Provide a vector with the docvars names

# We don't need the "NU" docvar (that's just a file index), so we drop it
df_pt$NU <- NULL

Document variables are really important as they help us make comparisons betweeen common elements in a
corpus. For example, in RQ2 for this lab, we want to know whether there are differences in word frequencies
in stories that mention Russia and stories that mention Japan. We could create a new docvar that indicates
whether an article mentions either of the two countries (or both). This can be easily done with functions
from the stringr package.

We can search for a keyword (say, “Japan” or “Russia”) in each text. Whenever we find a match, we can mark
that row as mentioning either of the two countries (as either TRUE or FALSE). We can store this information
in a vector for each country, and then we can save those as new columns in our df. This information can
then be used in quanteda as docvar to compare articles mentioning one country or the other.
#install.packages("stringr")
library(stringr)

# We merge both datasets into a single data frame
df <- rbind(df_kcna, df_pt)

# The str_detect command finds instances of a string within a string
mention_japan <- str_detect(string = df$text, pattern = "Japan")
mention_russia <- str_detect(string = df$text, pattern = "Russia")
df$japan <- mention_japan
df$russia <- mention_russia

# We add one column for articles that mention both countries
df$both <- with(df, japan & russia)

With all our docvars in place, we are ready to create our first quanteda corpus (step 1). All we need is the
corpus function.
# Create a corpus with quanteda
nk_corpus <- corpus(df)

# We can see what's inside our corpus using the `summary` command
# The default number of entries to display is 100
summary(nk_corpus, 10)

## Corpus consisting of 3031 documents, showing 10 documents:
##
## Text Types Tokens Sentences DE SC japan russia both
## KCNA.csv.1 124 226 9 1997-01-18 KCNA TRUE FALSE FALSE
## KCNA.csv.2 69 122 4 1997-01-21 KCNA FALSE FALSE FALSE
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## KCNA.csv.3 120 296 15 1997-01-25 KCNA FALSE FALSE FALSE
## KCNA.csv.4 38 59 4 1997-01-25 KCNA FALSE TRUE FALSE
## KCNA.csv.5 56 78 2 1997-01-28 KCNA FALSE FALSE FALSE
## KCNA.csv.6 132 304 10 1997-01-31 KCNA FALSE FALSE FALSE
## KCNA.csv.7 122 213 6 1998-01-08 KCNA FALSE FALSE FALSE
## KCNA.csv.8 28 48 2 1998-01-16 KCNA FALSE TRUE FALSE
## KCNA.csv.9 181 355 15 1998-01-16 KCNA FALSE FALSE FALSE
## KCNA.csv.10 133 255 9 1998-01-16 KCNA FALSE FALSE FALSE

As you might recall from our lecture, we differentiate betwween “types” (unique words) and “tokens” (all
words) in a document. To be more precise, both type and token also include punctuation and special symbols.

Step 3: Defining documentary unit When creating a corpus with quanteda, by running the summary
command, we also get the number of sentences in a document. Depending on what it is that we are studying,
we might determine that, the best documentary unit (i.e. how do we want to break down the corpus)
is a sentence, or a paragraph, or the full document. We can make this transformations easily with the
corpus_reshape command.
# You could change the unit of text (defaults to "document") to sentences
nk_sent_corpus <- corpus_reshape(nk_corpus, to = 'sentences')
ndoc(nk_sent_corpus)

## [1] 32473
summary(nk_sent_corpus, 3)

## Corpus consisting of 32473 documents, showing 3 documents:
##
## Text Types Tokens Sentences DE SC japan russia both
## KCNA.csv.1.1 31 38 1 1997-01-18 KCNA TRUE FALSE FALSE
## KCNA.csv.1.2 10 10 1 1997-01-18 KCNA TRUE FALSE FALSE
## KCNA.csv.1.3 14 17 1 1997-01-18 KCNA TRUE FALSE FALSE
# Or back to documents (in our case, each article)
nk_corpus <- corpus_reshape(nk_sent_corpus, to = 'documents')
ndoc(nk_corpus)

## [1] 3031
summary(nk_corpus, 3)

## Corpus consisting of 3031 documents, showing 3 documents:
##
## Text Types Tokens Sentences DE SC japan russia both
## KCNA.csv.1 124 226 9 1997-01-18 KCNA TRUE FALSE FALSE
## KCNA.csv.2 69 122 4 1997-01-21 KCNA FALSE FALSE FALSE
## KCNA.csv.3 120 296 15 1997-01-25 KCNA FALSE FALSE FALSE

Determining the best documentary unit really depends on your RQs or Hs. In our case, we are not interested
in the granularity provided by a sentence-by-sentence analysis, so we will just keep our full corpus.

Part 2 - Pre-processing documents in a corpus

As you might recall from our lecture, it is during the pre-processing stage that we make some of the most
consequential decissions in the analysis of text. This is the stage in which we decide what features to
include, and what features to transform. This is also the stage that tends to bring most human involvement
(the ‘qualitative’ dimension). We will see how different choices impact our outcome by comparing different
pre-processing choices.
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Step 4: Defining and refining features While there isn’t a single best workflow to pre-process our data,
we generally follow these steps. In some cases, you might need/want to skip some of them (e.g. sometimes,
capitalized words matter, and therefore we would not lowecarse our corpus). 1. Tokenize - we break down
each text in the corpus into tokens. 2. Remove punctuation & capitalization. 3. Discard stopwords - we can
use existing lists, or create our own lists. 4. Stem & lemmatize

Before we do that with our corpus, let’s start with a short character vector to see how the process works.
After tokenizing it, we are going to use the Porter stemmer for English to stem it. Remember that stemming
remmoves rather bluntly the suffix of a word, and might lead to unwanted consequences. However, it is the
easiest and fastest way to reduce the number of features (the dimensionality) in a corpus.
sampletxt <- "The police with their policing instruments created a policy of fear."

tokenized_text <- tokens(sampletxt)
tokenized_text

## Tokens consisting of 1 document.
## text1 :
## [1] "The" "police" "with" "their" "policing"
## [6] "instruments" "created" "a" "policy" "of"
## [11] "fear" "."
stems <- tokens_wordstem(tokenized_text)
stems

## Tokens consisting of 1 document.
## text1 :
## [1] "The" "polic" "with" "their" "polic"
## [6] "instrument" "creat" "a" "polici" "of"
## [11] "fear" "."

In our example, the un-stemmed sentence leaves us with 12 tokens and 12 features, while the stemmed version
has 11 features. The Porter stemmer is able to differentiate between polic (police, and policing) and polici
(policy).

Currently, quanteda uses the stemmer in the SnowballC package, and is is able to handle stemming for the
following languages:
#install.packages(SnowballC)
library(SnowballC)
getStemLanguages()

## [1] "arabic" "basque" "catalan" "danish" "dutch"
## [6] "english" "finnish" "french" "german" "greek"
## [11] "hindi" "hungarian" "indonesian" "irish" "italian"
## [16] "lithuanian" "nepali" "norwegian" "porter" "portuguese"
## [21] "romanian" "russian" "spanish" "swedish" "tamil"
## [26] "turkish"

For languages in which character spaces are not used, quanteda uses different approaches for tokenization. For
Japanese and Chinese, the tokens() function will automatically detect word boundaries using a dictionary
with frequency information as explained here.

This isn’t a clean approach and is prone to errors. There are other options for Japanese, as explained [here]
(https://tutorials.quanteda.io/language-specific/japanese/). For more info on quanteda & Chinese, you can
read this. There’s an excellent presentation on the topic of Asian languages and computational text analysis
by Kohei Watanabe.

Now that you have seen how tokenization works, let’s use the power of quanteda to pre-process textual data
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in a corpus. We can do most of the pre-processing (e.g. lowercasering, removing stopwords, tokenizing. . . )
with just a few lines of code.
# 1 - Tokenize corpus & remove punctuation
nk_tokens <- tokens(nk_corpus,

remove_punct = TRUE,
remove_numbers = TRUE,
remove_symbols = TRUE) # For even more options, see ?tokens

head(nk_tokens[[7]], 20) # Gives me 50 tokens from first document in corpus

## [1] "Rodong" "Sinmun" "today" "comments"
## [5] "on" "the" "unjustifiable" "agreement"
## [9] "of" "the" "National" "Congress"
## [13] "for" "New" "Politics" "the"
## [17] "United" "Liberal" "Democrats" "and"
# 2- Lowercase the corpus
nk_lower_tokens <- tokens_tolower(nk_tokens)
head(nk_lower_tokens[[7]], 20)

## [1] "rodong" "sinmun" "today" "comments"
## [5] "on" "the" "unjustifiable" "agreement"
## [9] "of" "the" "national" "congress"
## [13] "for" "new" "politics" "the"
## [17] "united" "liberal" "democrats" "and"

Your next choice is between discarding or not discarding words from the tokenized version of the corpus
using a list of stopwords or by passing your own list of words. In either case, you will want to use the
tokens_remove() command.

The stopwords package, which is used by quanteda, includes a good array of lists of commonly used words
for many languages. The package includes lists from different sources, and for each source, there are lists for
different languages. You can get the lists of sources and languages with specific commands as detailed below.
Once you have identified the source and language you want, you can print the list of words.
# 3 - Remove stopwords
#install.packages("stopwords")
library(stopwords)
# Prints a list of available sources for stopwords
stopwords_getsources()

## [1] "snowball" "stopwords-iso" "misc" "smart"
## [5] "marimo" "ancient" "nltk" "perseus"
# Prints a list of languags for a given source
stopwords_getlanguages("marimo")

## [1] "en" "de" "ar" "he" "zh_tw" "zh_cn" "ko" "ja"
stopwords("en", "snowball")

## [1] "i" "me" "my" "myself" "we"
## [6] "our" "ours" "ourselves" "you" "your"
## [11] "yours" "yourself" "yourselves" "he" "him"
## [16] "his" "himself" "she" "her" "hers"
## [21] "herself" "it" "its" "itself" "they"
## [26] "them" "their" "theirs" "themselves" "what"
## [31] "which" "who" "whom" "this" "that"
## [36] "these" "those" "am" "is" "are"
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## [41] "was" "were" "be" "been" "being"
## [46] "have" "has" "had" "having" "do"
## [51] "does" "did" "doing" "would" "should"
## [56] "could" "ought" "i'm" "you're" "he's"
## [61] "she's" "it's" "we're" "they're" "i've"
## [66] "you've" "we've" "they've" "i'd" "you'd"
## [71] "he'd" "she'd" "we'd" "they'd" "i'll"
## [76] "you'll" "he'll" "she'll" "we'll" "they'll"
## [81] "isn't" "aren't" "wasn't" "weren't" "hasn't"
## [86] "haven't" "hadn't" "doesn't" "don't" "didn't"
## [91] "won't" "wouldn't" "shan't" "shouldn't" "can't"
## [96] "cannot" "couldn't" "mustn't" "let's" "that's"
## [101] "who's" "what's" "here's" "there's" "when's"
## [106] "where's" "why's" "how's" "a" "an"
## [111] "the" "and" "but" "if" "or"
## [116] "because" "as" "until" "while" "of"
## [121] "at" "by" "for" "with" "about"
## [126] "against" "between" "into" "through" "during"
## [131] "before" "after" "above" "below" "to"
## [136] "from" "up" "down" "in" "out"
## [141] "on" "off" "over" "under" "again"
## [146] "further" "then" "once" "here" "there"
## [151] "when" "where" "why" "how" "all"
## [156] "any" "both" "each" "few" "more"
## [161] "most" "other" "some" "such" "no"
## [166] "nor" "not" "only" "own" "same"
## [171] "so" "than" "too" "very" "will"

In addition, you could create your own list of words by simply creating a vector of words (or importing a list
from an external file).
# Create a list of words to exclude
days_week <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")

# Exclude words from stopwords list
nk_tokens_no_stopwords <- tokens_remove(nk_lower_tokens, stopwords("en", "snowball"))
head(nk_lower_tokens[[7]], 20) # with stopwords

## [1] "rodong" "sinmun" "today" "comments"
## [5] "on" "the" "unjustifiable" "agreement"
## [9] "of" "the" "national" "congress"
## [13] "for" "new" "politics" "the"
## [17] "united" "liberal" "democrats" "and"
head(nk_tokens_no_stopwords[[7]], 20) # without stopwords

## [1] "rodong" "sinmun" "today" "comments"
## [5] "unjustifiable" "agreement" "national" "congress"
## [9] "new" "politics" "united" "liberal"
## [13] "democrats" "grand" "national" "party"
## [17] "south" "korea" "push" "ahead"
# Exclude words from custom made list
nk_tokens_no_stopwords <- tokens_remove(nk_tokens_no_stopwords, days_week)

The final step of the pre-processing stage involves stemming or lemmatizing your corpus. Both approaches
reduce the size of our data, as words that would be considered different in an un-stemmed corpus (e.g. win,

6



winner and winning), would become the same word. Stemming can be done faily quickly, but it is more prone
to error. Lemmatizing is more computationally intensive, but much more accurate.

As we saw earlier, we can use the tokens_wordstem() command to stem a sentence, a text, or a quanteda
corpus. By default, quanteda assumes we are stemming an English language text, but it is possible to use the
argument language to specify an alternative language from the list you have above.
# Stemming
nk_tokens_stemmed <- tokens_wordstem(nk_tokens_no_stopwords)
head(nk_tokens_stemmed[[7]], 20)

## [1] "rodong" "sinmun" "today" "comment" "unjustifi" "agreement"
## [7] "nation" "congress" "new" "polit" "unit" "liber"
## [13] "democrat" "grand" "nation" "parti" "south" "korea"
## [19] "push" "ahead"

Lemmatizing involves using previously trained models of a language that make it possible to identify what
part of speech a given word is, or to disambiguate when a word might have different meanings. This is, as you
might imagine, a much more computationally intense process than stemming, which we were able to complete
rather fast. There’s no function in quanteda to lemmatize a corpus, but we can lean on the udppipe package
to do so. Because this is a somewhat more complex process, I will not be covering it in this lab.

Part 3 - DFM creation

Step 5: Converting features to quantitative matrices In quanteda, the data structure used to fit
statistical models for text analysis is the document feature matrix (DFM). This is just one way to represent
data in the bag-of-words-approach. Let’s first use the dfm() command to create a DFM from the stemmed
tokens object that we saved early on.
# DFM fromm a stemmed tokens object
nk_dfm_stemmed <- dfm(nk_tokens_stemmed)

For illustration, we are going to create several DFMs to compare the impact of different types of pre-processig on
their size. We will create 4 DFMs: nk_tokens (unprocessed tokenized version of our corpus) named nk_dfm1,
nk_lower_tokens (tokenized version of the corpus in lower case) named nk_dfm2, nk_tokens_no_stopwords
(tokenized version with no stop words) named nk_dfm3, and, finally, nk_tokens_stemmed (tokenized, pre-
processed, stemmed without stopwords) named nk_dfm. Compare the number of features in each DFM
# Step 1 - Creates DFM from tokens objects
nk_dfm1 <- dfm(nk_tokens, tolower = FALSE)
nk_dfm2 <- dfm(nk_lower_tokens)
nk_dfm3 <- dfm(nk_tokens_no_stopwords)
nk_dfm <- dfm(nk_tokens_stemmed)

# Step 2 - Compare number of features
nfeat(nk_dfm1)

## [1] 29104
nfeat(nk_dfm2)

## [1] 25209
nfeat(nk_dfm3)

## [1] 25054
nfeat(nk_dfm)

## [1] 16830
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At each step of the way, the number of features in our DFM has been reduced. There’s one last step we can
take to decrease the number of words to make our analysis faster and to avoid unnecessary noise: trimming
the dfm object. When we trim a dfm, we remove features that either occur very frequently (e.g. 95% of
documents) or very rarely (e.g. less than 1% of documents). The dfm_trim allows to specify these percentages,
and use other criteria to limit the size of our dfm, such as the absolute maximum or minimum number of
times a word occurs in the corpus.

To exemplify this, let’s print the top 50 occurring words in the nk_dfm object by using the topfeatures()
command.
# Most frequently occurring words
topfeatures(nk_dfm, 50)

## korean peopl kim nation dprk
## 6069 5903 5457 4735 4329
## il countri korea south jong
## 3938 3416 3251 3158 3037
## parti war presid militari work
## 2383 2126 2024 1891 1849
## said develop great forc u.
## 1843 1838 1801 1734 1722
## year us reunif sung committe
## 1707 1663 1656 1643 1480
## revolutionari made pyongyang japan world
## 1476 1396 1395 1367 1327
## general organ north build armi
## 1317 1299 1277 1268 1262
## leader independ make peac power
## 1259 1253 1246 1224 1216
## new includ intern polit worker
## 1189 1166 1154 1150 1112
## japanes x relat nuclear offici
## 1101 1100 1073 1063 1051

Given that our corpus has 3,000 documents, some of these terms might be appearing on almost every single
document. A word that appears in all documents is a word that has no discriminative power; the same
applies for words that are so unique that only “describe” one document.
# Compare different trims of nk_dfm
nk_dfm_trimmed1 <- dfm_trim(nk_dfm,

max_docfreq = 1250)

nk_dfm_trimmed2 <- dfm_trim(nk_dfm,
min_docfreq = 0.1)

nk_dfm_trimmed3 <- dfm_trim(nk_dfm,
min_termfreq = 10,
max_termfreq = 100)

nk_dfm_trimmed4 <- dfm_trim(nk_dfm,
min_termfreq = 100,
max_termfreq = 1000)

nfeat(nk_dfm_trimmed1)

## [1] 16823
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nfeat(nk_dfm_trimmed2)

## [1] 16830
nfeat(nk_dfm_trimmed3)

## [1] 3521
nfeat(nk_dfm_trimmed4)

## [1] 927
topfeatures(nk_dfm_trimmed1, 20)

## il south jong parti war
## 3938 3158 3037 2383 2126
## presid militari work said develop
## 2024 1891 1849 1843 1838
## great forc u. year us
## 1801 1734 1722 1707 1663
## reunif sung committe revolutionari made
## 1656 1643 1480 1476 1396
topfeatures(nk_dfm_trimmed2, 20)

## korean peopl kim nation dprk il countri korea
## 6069 5903 5457 4735 4329 3938 3416 3251
## south jong parti war presid militari work said
## 3158 3037 2383 2126 2024 1891 1849 1843
## develop great forc u.
## 1838 1801 1734 1722
topfeatures(nk_dfm_trimmed3, 20)

## anti-reunif meanwhil bear shape premier taekwon-do
## 100 100 100 100 100 100
## victim mansuda defens remov sacr root
## 100 99 99 99 99 99
## contain juche-ori literatur intend session block
## 99 99 99 98 98 98
## date describ
## 98 98
topfeatures(nk_dfm_trimmed4, 20)

## product time govern caus effort central idea day
## 993 985 972 961 947 941 931 922
## juch visit achiev revolut present foreign unit declar
## 922 919 916 914 905 902 898 894
## one perform secretari socialist
## 892 886 878 864

As shown in the top 20 most frequent words for each of the four trims we have identified, our choice of how
to limit the size of the DFM will have quite an impact on the data we will be using to analyze our texts,
and to fit our models. There is no one solution that fits all cases, so you will need to play around with the
settings until you find one that fits best to the data that you have.

9



Part 4 - Descriptive statistics for a corpus

We have reached the final two steps in our seven step approach to using quanteda to analyze text data. As
you will soon discover, the last two steps are often the ‘easiest’ ones.

Steps 5 & 6: Analize text data and summarize/interpret the results With quanteda you can
compute several descriptive measures of your texts including word frequencies (absolute and relative, lexical
diversity, feature similarity. . . ). Instructions on how to compute some of these metrics can be found here.

To conclude this lab, we will come back to the RQs that we put forward at the very beginning, and use our
data to provide an answer.

1. What are the most frequently used words in news stories by KCNA and PT between 1997 and 2014?

We already know that we can retrieve top words from a dfm using the topfeatures() command. We can
get additional information, and we can retrieve data for two different groups (KCAN and PT, for example)
by using the texstat_frequency() command. Because we spent some time at the very beginning of this lab
adding metadata to our corpus, now we can use that metadata (quanteda’s docvars) to summarize the data
for us.

We are going to compare the two sources (metadata stored in a docvar called ‘SC’), and for each source, we
are going to get the top 20 features.
#install.packages("quanteda.textstats")
#install.packages("quanteda.textplots")
library(quanteda.textstats)
library(quanteda.textplots)
tstat_freq <- quanteda.textstats::textstat_frequency(nk_dfm, n = 20, groups = SC)
head(tstat_freq, 40)

## feature frequency rank docfreq group
## 1 kim 3109 1 995 KCNA
## 2 korean 3072 2 1101 KCNA
## 3 peopl 2919 3 1140 KCNA
## 4 dprk 2475 4 947 KCNA
## 5 il 2340 5 794 KCNA
## 6 nation 2200 6 867 KCNA
## 7 south 1859 7 581 KCNA
## 8 jong 1857 8 726 KCNA
## 9 korea 1848 9 928 KCNA
## 10 u. 1722 10 426 KCNA
## 11 countri 1537 11 832 KCNA
## 12 parti 1233 12 553 KCNA
## 13 presid 1075 13 595 KCNA
## 14 said 1054 14 683 KCNA
## 15 forc 1029 15 492 KCNA
## 16 reunif 996 16 362 KCNA
## 17 war 995 17 388 KCNA
## 18 great 965 18 528 KCNA
## 19 committe 914 19 504 KCNA
## 20 sung 890 20 496 KCNA
## 21 korean 2997 1 711 PT
## 22 peopl 2984 2 734 PT
## 23 nation 2535 3 670 PT
## 24 kim 2348 4 560 PT
## 25 countri 1879 5 678 PT
## 26 dprk 1854 6 568 PT
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## 27 il 1598 7 451 PT
## 28 us 1581 8 324 PT
## 29 korea 1403 9 550 PT
## 30 south 1299 10 317 PT
## 31 develop 1192 11 488 PT
## 32 jong 1180 12 412 PT
## 33 parti 1150 13 359 PT
## 34 year 1144 14 518 PT
## 35 war 1131 15 313 PT
## 36 militari 1130 16 330 PT
## 37 x 1100 17 1100 PT
## 38 work 969 18 469 PT
## 39 pyongyang 956 19 433 PT
## 40 presid 949 20 346 PT

The table above provides both the number of times each feature is used, and the number of documents that
contain each feature. We could use this information to compute relative frequencies, and plot them using the
ggplot package. The chunk of code below weights the dfm (word frequency/total number of words), and
uses that information to generate a plot that compares the top 20 words used by KCNA and PT.
library(ggplot2)
nk_dfm_weighted <- nk_dfm %>%

dfm_group(groups = SC) %>%
dfm_weight(scheme = "prop")

relative_frequencies <- textstat_frequency(nk_dfm_weighted, n = 20, groups = SC)

ggplot(data = relative_frequencies, aes(x = factor(nrow(relative_frequencies):1), y = frequency)) +
geom_point() +
facet_wrap(~ group, scales = "free") +
coord_flip() +
scale_x_discrete(breaks = nrow(relative_frequencies):1,

labels = relative_frequencies$feature) +
labs(x = NULL, y = "Relative frequency")
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Relative frequency

Unsurprisingly, there is very little difference in the most frequently used words of KCNA and PT, both
of which are Party/State-controlled media. Any differences here in relative frequencies, would need to be
tested statistically before we could make any inferences of the entire population. Remember, we only used a
relatively small sample of articles for this analysis.

2. Are there differences in the words used by KCNA and PT in news stories mentioning Russia and Japan?

To answer this question, we are first going to use a simple visualization: a wordcloud of absolute frequencies
to compare articles mentioning Russia to those mentioning Japan. The approach here is very similar to the
one we used to plot KCNA and PT frequencies. First, we want to “group” our nk_dfm by a new docvar called
mentions that tell us whether an article mentions Japan, Russia, both or neither. Earlier on we created
columns with mentions for Russia and Japan. We can use these with the verb mutate and the command
case_when to create the new variable based on four conditions.
df <- df %>%

mutate(mentions = case_when(mention_japan == TRUE & mention_russia != TRUE ~ "Japan",
mention_japan != TRUE & mention_russia == TRUE ~ "Russia",
mention_japan == TRUE & mention_russia == TRUE ~ "Russia & Japan",
TRUE ~ "No mention"))

nk_dfm$mentions <- df$mentions # Adds the docvar to the dfm object

Now that we have this new variable, we can group the texts into one of these four categories. When we group
a dfm we change the documentary unit from each article to each group. So, basically, we will have four very
large documents, one with ALL articles that mention Japan, one with ALL the articles that mention Russia,
and one each for those mentioning both countries, and those not mentioning either of them. We can see that
when we use the head() command.
# Create a grouped dfm and compare groups
nk_dfm_compare <- dfm_group(nk_dfm, groups = mentions)
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head(nk_dfm_compare)

## Document-feature matrix of: 4 documents, 16,830 features (56.43% sparse) and 4 docvars.
## features
## docs rodong sinmun today comment militarist utter made former
## Japan 50 50 73 12 54 7 300 57
## No mention 162 164 192 39 1 39 973 107
## Russia 4 4 15 1 1 2 83 6
## Russia & Japan 2 2 4 3 7 0 40 10
## features
## docs director general
## Japan 57 279
## No mention 218 886
## Russia 44 104
## Russia & Japan 8 48
## [ reached max_nfeat ... 16,820 more features ]

As you can see, now we only have 4 ‘docs’, one called Japan, one called Russia, one called Russia & Japan
and one called No mention. Each “document” (group all the articles) contains the sum of all term frequencies.
We can now use this DFM to create a comparative wordcloud.
# Create worcloud
set.seed(132)
textplot_wordcloud(nk_dfm_compare, comparison = TRUE, max_words = 130, color = c("blue", "green", "salmon", "purple"))

## Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
## leadership could not be fit on page. It will not be plotted.

## Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
## front could not be fit on page. It will not be plotted.

## Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
## polit could not be fit on page. It will not be plotted.

## Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
## shale could not be fit on page. It will not be plotted.
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If you look carefully, you can see that the words associated with Japan are much more belligerent (anti-
japanese, aggressive, imperialisti, war, military. . . ), while those used in articles about Russia are more
amicable (cooperation, embassy, visit. . . ).

You could now compare the actual counts of words, by using the texstat_frequency command we saw
earlier.
# Get a table with frequencies
relative_frequencies <- textstat_frequency(nk_dfm_compare, n = 30, groups = mentions)
relative_frequencies

## feature frequency rank docfreq group
## 1 korean 1926 1 1 Japan
## 2 peopl 1415 2 1 Japan
## 3 japan 1245 3 1 Japan
## 4 kim 1229 4 1 Japan
## 5 nation 1154 5 1 Japan
## 6 japanes 1014 6 1 Japan
## 7 korea 962 7 1 Japan
## 8 dprk 905 8 1 Japan
## 9 il 899 9 1 Japan
## 10 countri 813 10 1 Japan
## 11 war 772 11 1 Japan
## 12 militari 725 12 1 Japan
## 13 revolutionari 595 13 1 Japan
## 14 forc 581 14 1 Japan
## 15 jong 577 15 1 Japan
## 16 south 561 16 1 Japan
## 17 parti 539 17 1 Japan
## 18 us 532 18 1 Japan
## 19 sung 494 19 1 Japan
## 20 presid 482 20 1 Japan
## 21 organ 419 21 1 Japan
## 22 armi 418 22 1 Japan
## 23 work 390 23 1 Japan
## 24 u. 372 24 1 Japan
## 25 great 359 25 1 Japan
## 26 year 353 26 1 Japan
## 27 said 352 27 1 Japan
## 28 revolut 334 28 1 Japan
## 29 nuclear 334 28 1 Japan
## 30 issu 332 30 1 Japan
## 31 peopl 4004 1 1 No mention
## 32 korean 3657 2 1 No mention
## 33 kim 3607 3 1 No mention
## 34 nation 3228 4 1 No mention
## 35 dprk 2969 5 1 No mention
## 36 il 2557 6 1 No mention
## 37 south 2509 7 1 No mention
## 38 countri 2231 8 1 No mention
## 39 jong 2072 9 1 No mention
## 40 korea 2054 10 1 No mention
## 41 parti 1653 11 1 No mention
## 42 develop 1396 12 1 No mention
## 43 work 1319 13 1 No mention

14



## 44 said 1298 14 1 No mention
## 45 presid 1297 15 1 No mention
## 46 reunif 1282 16 1 No mention
## 47 great 1279 17 1 No mention
## 48 u. 1278 18 1 No mention
## 49 year 1235 19 1 No mention
## 50 war 1200 20 1 No mention
## 51 committe 1069 21 1 No mention
## 52 forc 1047 22 1 No mention
## 53 north 1033 23 1 No mention
## 54 militari 980 24 1 No mention
## 55 sung 974 25 1 No mention
## 56 made 973 26 1 No mention
## 57 pyongyang 962 27 1 No mention
## 58 us 959 28 1 No mention
## 59 world 937 29 1 No mention
## 60 peac 917 30 1 No mention
## 61 kim 431 1 1 Russia
## 62 dprk 377 2 1 Russia
## 63 peopl 339 3 1 Russia
## 64 il 335 4 1 Russia
## 65 russian 304 5 1 Russia
## 66 korean 294 6 1 Russia
## 67 jong 282 7 1 Russia
## 68 countri 258 8 1 Russia
## 69 russia 242 9 1 Russia
## 70 nation 223 10 1 Russia
## 71 presid 157 11 1 Russia
## 72 said 144 12 1 Russia
## 73 develop 128 13 1 Russia
## 74 perform 127 14 1 Russia
## 75 korea 124 15 1 Russia
## 76 leader 122 16 1 Russia
## 77 parti 119 17 1 Russia
## 78 great 111 18 1 Russia
## 79 committe 109 19 1 Russia
## 80 us 109 19 1 Russia
## 81 work 106 21 1 Russia
## 82 friendship 105 22 1 Russia
## 83 intern 105 22 1 Russia
## 84 sung 105 22 1 Russia
## 85 general 104 25 1 Russia
## 86 militari 103 26 1 Russia
## 87 cooper 103 26 1 Russia
## 88 visit 100 28 1 Russia
## 89 world 99 29 1 Russia
## 90 foreign 98 30 1 Russia
## 91 korean 192 1 1 Russia & Japan
## 92 kim 190 2 1 Russia & Japan
## 93 il 147 3 1 Russia & Japan
## 94 peopl 145 4 1 Russia & Japan
## 95 nation 130 5 1 Russia & Japan
## 96 japan 122 6 1 Russia & Japan
## 97 countri 114 7 1 Russia & Japan
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## 98 korea 111 8 1 Russia & Japan
## 99 jong 106 9 1 Russia & Japan
## 100 war 92 10 1 Russia & Japan
## 101 presid 88 11 1 Russia & Japan
## 102 japanes 87 12 1 Russia & Japan
## 103 militari 83 13 1 Russia & Japan
## 104 dprk 78 14 1 Russia & Japan
## 105 parti 72 15 1 Russia & Japan
## 106 sung 70 16 1 Russia & Japan
## 107 revolutionari 69 17 1 Russia & Japan
## 108 art 69 17 1 Russia & Japan
## 109 us 63 19 1 Russia & Japan
## 110 pyongyang 62 20 1 Russia & Japan
## 111 russia 61 21 1 Russia & Japan
## 112 map 58 22 1 Russia & Japan
## 113 leader 54 23 1 Russia & Japan
## 114 foreign 54 23 1 Russia & Japan
## 115 great 52 25 1 Russia & Japan
## 116 juch 51 26 1 Russia & Japan
## 117 basket 51 26 1 Russia & Japan
## 118 said 49 28 1 Russia & Japan
## 119 intern 49 28 1 Russia & Japan
## 120 organ 49 28 1 Russia & Japan

The list of absolute counts confirms what we could see in the wordcloud, words like “armi”, “war”, “militari”
and “forc” are among the top 30 most frequently occurring words in texts about Japan, but most are missing
from the list for Russia. Instead, we find words like “develop”, “friendship”, “visit” and “cooper”.

We could now use these word counts (or relative word counts) to test whether these differences we observe in
the sample are statistically significant, and thus descriptive of the entire population.
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