
Text Analysis with R
24 March 2022

Dani Madrid-Morales

Installing packages, and setting the enrvironment up

The goal of this lab is to learn how to load different types of texts to quanteda, transform them into a corpus,
clean them, re-shape them, describe them, and create simple visualizations.

For this lab session, we will use a dataset that includes a random sample of news stories published by two
English-language news organizations from North Korea: the Korean Central News Agency (KCNA) and the
Pyongyang Times (PT). The goal for today’s lab is to answer two research questions:
1. What are the most frequently used words in news stories by KCNA and PT between 1997 and 2014?
2. Are there differences in the words used by KCNA and PT in news stories mentioning Russia and Japan?

Part 1 - Importing some documents and creating a corpus with some additional metadata

There are commonly seven steps in any computational text analysis project:
1. Selecting texts and defining a corpus. [part 1]
2. Converting the texts into a common format. [part 1]
3. Deciding the documentary unit. [part 1]
4. Defining and refining the features. [part 2]
5. Converting features to a quantitative matrix. [part 3]
6. Extracting information from the matrix statistically. [part 4]
7. Summarizing & interpreting the results. [part 4]

My goal with this lab is to cover the whole process in four parts, so that you get a sense of how easy it is to
do basic descriptive text analysis with quanteda, but also to highlight that many of the steps involve quite a
bit of human involvement and, therefore, often require us to go through different rounds of trial and error.

Steps 1 & 2: selecting texts, defining a corpus and converting them to a common format Using
the readtext package is probably the most convenient way to import texts into R to create a corpus. It was
developed by the same team that developed quanteda, and therefore the package is able to handle multiple
situations, such as reading text stored in rows in Excel and csv format, or to read files such as docx and pdf
(as long as the pdf file has ben OCRed first).

I’d like to show you two common approaches in importing data:
1. Reading a CSV file that has one column that stores each text in one row, and has additional columns with
“metadata” (i.e. additional information about each file, such as the author, the date. . .).
2. Reading text from a folder with lots of files, where each file has one text, and the filename includes the
mmetadata.

You can read how to handle other situations in the documentation of the readtext package.

Let’s start with the simpler approach: importing data from a csv file. readtext has a single function,
readtext that requires us to specify the name of the column in the csv file that has the text data. In our
case, it is the TXcolumn.

The resulting object is a readtext object with four variables: text, a new variable called docid which will
be used by quanteda to identify each text in our dataset, and the two additional variables (metadata) that

1

were included in the original final. In quanteda speak, we will call metadata (the additional information
about each text) docvars. Docvars are very useful, as they allows us to separate the corpus (or group it)
according to some theoretically-driven characteristics of our data.

Data from The Pyongyang Times (PT) is stored in a folder called “PT”. Each article is saved as a txt file, and
the filename includes the docvars we neeed (date and source). This is a scenario that readtext can handle
rather easily: it reads each file in the folder and identifies the variables from the file name automatically
“2005-08-29_PT_143.txt”. All we need to specificy are the names of each variable.
df_pt <- readtext(file = "data/PT/", # We pass the name of the folder that has the files

docvarsfrom = "filename", # Refer to th filename to find the docvars
docvarnames = c("DE", "SC", "NU")) # Provide a vector with the docvars names

We don't need the "NU" docvar (that's just a file index), so we drop it
df_pt$NU <- NULL

Document variables are really important as they help us make comparisons betweeen common elements in a
corpus. For example, in RQ2 for this lab, we want to know whether there are differences in word frequencies
in stories that mention Russia and stories that mention Japan. We could create a new docvar that indicates
whether an article mentions either of the two countries (or both). This can be easily done with functions
from the stringr package.

We can search for a keyword (say, “Japan” or “Russia”) in each text. Whenever we find a match, we can mark
that row as mentioning either of the two countries (as either TRUE or FALSE). We can store this information
in a vector for each country, and then we can save those as new columns in our df. This information can
then be used in quanteda as docvar to compare articles mentioning one country or the other.
#install.packages("stringr")
library(stringr)

We merge both datasets into a single data frame
df <- rbind(df_kcna, df_pt)

The str_detect command finds instances of a string within a string
mention_japan <- str_detect(string = df$text, pattern = "Japan")
mention_russia <- str_detect(string = df$text, pattern = "Russia")
df$japan <- mention_japan
df$russia <- mention_russia

We add one column for articles that mention both countries
df$both <- with(df, japan & russia)

With all our docvars in place, we are ready to create our first quanteda corpus (step 1). All we need is the
corpus function.
Create a corpus with quanteda
nk_corpus <- corpus(df)

We can see what's inside our corpus using the `summary` command
The default number of entries to display is 100
summary(nk_corpus, 10)

Corpus consisting of 3031 documents, showing 10 documents:
##
Text Types Tokens Sentences DE SC japan russia both
KCNA.csv.1 124 226 9 1997-01-18 KCNA TRUE FALSE FALSE
KCNA.csv.2 69 122 4 1997-01-21 KCNA FALSE FALSE FALSE

2

KCNA.csv.3 120 296 15 1997-01-25 KCNA FALSE FALSE FALSE
KCNA.csv.4 38 59 4 1997-01-25 KCNA FALSE TRUE FALSE
KCNA.csv.5 56 78 2 1997-01-28 KCNA FALSE FALSE FALSE
KCNA.csv.6 132 304 10 1997-01-31 KCNA FALSE FALSE FALSE
KCNA.csv.7 122 213 6 1998-01-08 KCNA FALSE FALSE FALSE
KCNA.csv.8 28 48 2 1998-01-16 KCNA FALSE TRUE FALSE
KCNA.csv.9 181 355 15 1998-01-16 KCNA FALSE FALSE FALSE
KCNA.csv.10 133 255 9 1998-01-16 KCNA FALSE FALSE FALSE

As you might recall from our lecture, we differentiate betwween “types” (unique words) and “tokens” (all
words) in a document. To be more precise, both type and token also include punctuation and special symbols.

Step 3: Defining documentary unit When creating a corpus with quanteda, by running the summary
command, we also get the number of sentences in a document. Depending on what it is that we are studying,
we might determine that, the best documentary unit (i.e. how do we want to break down the corpus)
is a sentence, or a paragraph, or the full document. We can make this transformations easily with the
corpus_reshape command.
You could change the unit of text (defaults to "document") to sentences
nk_sent_corpus <- corpus_reshape(nk_corpus, to = 'sentences')
ndoc(nk_sent_corpus)

[1] 32473
summary(nk_sent_corpus, 3)

Corpus consisting of 32473 documents, showing 3 documents:
##
Text Types Tokens Sentences DE SC japan russia both
KCNA.csv.1.1 31 38 1 1997-01-18 KCNA TRUE FALSE FALSE
KCNA.csv.1.2 10 10 1 1997-01-18 KCNA TRUE FALSE FALSE
KCNA.csv.1.3 14 17 1 1997-01-18 KCNA TRUE FALSE FALSE
Or back to documents (in our case, each article)
nk_corpus <- corpus_reshape(nk_sent_corpus, to = 'documents')
ndoc(nk_corpus)

[1] 3031
summary(nk_corpus, 3)

Corpus consisting of 3031 documents, showing 3 documents:
##
Text Types Tokens Sentences DE SC japan russia both
KCNA.csv.1 124 226 9 1997-01-18 KCNA TRUE FALSE FALSE
KCNA.csv.2 69 122 4 1997-01-21 KCNA FALSE FALSE FALSE
KCNA.csv.3 120 296 15 1997-01-25 KCNA FALSE FALSE FALSE

Determining the best documentary unit really depends on your RQs or Hs. In our case, we are not interested
in the granularity provided by a sentence-by-sentence analysis, so we will just keep our full corpus.

Part 2 - Pre-processing documents in a corpus

As you might recall from our lecture, it is during the pre-processing stage that we make some of the most
consequential decissions in the analysis of text. This is the stage in which we decide what features to
include, and what features to transform. This is also the stage that tends to bring most human involvement
(the ‘qualitative’ dimension). We will see how different choices impact our outcome by comparing different
pre-processing choices.

3

Step 4: Defining and refining features While there isn’t a single best workflow to pre-process our data,
we generally follow these steps. In some cases, you might need/want to skip some of them (e.g. sometimes,
capitalized words matter, and therefore we would not lowecarse our corpus). 1. Tokenize - we break down
each text in the corpus into tokens. 2. Remove punctuation & capitalization. 3. Discard stopwords - we can
use existing lists, or create our own lists. 4. Stem & lemmatize

Before we do that with our corpus, let’s start with a short character vector to see how the process works.
After tokenizing it, we are going to use the Porter stemmer for English to stem it. Remember that stemming
remmoves rather bluntly the suffix of a word, and might lead to unwanted consequences. However, it is the
easiest and fastest way to reduce the number of features (the dimensionality) in a corpus.
sampletxt <- "The police with their policing instruments created a policy of fear."

tokenized_text <- tokens(sampletxt)
tokenized_text

Tokens consisting of 1 document.
text1 :
[1] "The" "police" "with" "their" "policing"
[6] "instruments" "created" "a" "policy" "of"
[11] "fear" "."
stems <- tokens_wordstem(tokenized_text)
stems

Tokens consisting of 1 document.
text1 :
[1] "The" "polic" "with" "their" "polic"
[6] "instrument" "creat" "a" "polici" "of"
[11] "fear" "."

In our example, the un-stemmed sentence leaves us with 12 tokens and 12 features, while the stemmed version
has 11 features. The Porter stemmer is able to differentiate between polic (police, and policing) and polici
(policy).

Currently, quanteda uses the stemmer in the SnowballC package, and is is able to handle stemming for the
following languages:
#install.packages(SnowballC)
library(SnowballC)
getStemLanguages()

[1] "arabic" "basque" "catalan" "danish" "dutch"
[6] "english" "finnish" "french" "german" "greek"
[11] "hindi" "hungarian" "indonesian" "irish" "italian"
[16] "lithuanian" "nepali" "norwegian" "porter" "portuguese"
[21] "romanian" "russian" "spanish" "swedish" "tamil"
[26] "turkish"

For languages in which character spaces are not used, quanteda uses different approaches for tokenization. For
Japanese and Chinese, the tokens() function will automatically detect word boundaries using a dictionary
with frequency information as explained here.

This isn’t a clean approach and is prone to errors. There are other options for Japanese, as explained [here]
(https://tutorials.quanteda.io/language-specific/japanese/). For more info on quanteda & Chinese, you can
read this. There’s an excellent presentation on the topic of Asian languages and computational text analysis
by Kohei Watanabe.

Now that you have seen how tokenization works, let’s use the power of quanteda to pre-process textual data

4

https://tutorials.quanteda.io/language-specific/japanese/
https://tutorials.quanteda.io/language-specific/japanese/
https://quanteda.io/articles/pkgdown/examples/chinese.html
https://koheiw.net/wp-content/uploads/2018/07/Asian-text-analysis.pdf

in a corpus. We can do most of the pre-processing (e.g. lowercasering, removing stopwords, tokenizing. . .)
with just a few lines of code.
1 - Tokenize corpus & remove punctuation
nk_tokens <- tokens(nk_corpus,

remove_punct = TRUE,
remove_numbers = TRUE,
remove_symbols = TRUE) # For even more options, see ?tokens

head(nk_tokens[[7]], 20) # Gives me 50 tokens from first document in corpus

[1] "Rodong" "Sinmun" "today" "comments"
[5] "on" "the" "unjustifiable" "agreement"
[9] "of" "the" "National" "Congress"
[13] "for" "New" "Politics" "the"
[17] "United" "Liberal" "Democrats" "and"
2- Lowercase the corpus
nk_lower_tokens <- tokens_tolower(nk_tokens)
head(nk_lower_tokens[[7]], 20)

[1] "rodong" "sinmun" "today" "comments"
[5] "on" "the" "unjustifiable" "agreement"
[9] "of" "the" "national" "congress"
[13] "for" "new" "politics" "the"
[17] "united" "liberal" "democrats" "and"

Your next choice is between discarding or not discarding words from the tokenized version of the corpus
using a list of stopwords or by passing your own list of words. In either case, you will want to use the
tokens_remove() command.

The stopwords package, which is used by quanteda, includes a good array of lists of commonly used words
for many languages. The package includes lists from different sources, and for each source, there are lists for
different languages. You can get the lists of sources and languages with specific commands as detailed below.
Once you have identified the source and language you want, you can print the list of words.
3 - Remove stopwords
#install.packages("stopwords")
library(stopwords)
Prints a list of available sources for stopwords
stopwords_getsources()

[1] "snowball" "stopwords-iso" "misc" "smart"
[5] "marimo" "ancient" "nltk" "perseus"
Prints a list of languags for a given source
stopwords_getlanguages("marimo")

[1] "en" "de" "ar" "he" "zh_tw" "zh_cn" "ko" "ja"
stopwords("en", "snowball")

[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"
[11] "yours" "yourself" "yourselves" "he" "him"
[16] "his" "himself" "she" "her" "hers"
[21] "herself" "it" "its" "itself" "they"
[26] "them" "their" "theirs" "themselves" "what"
[31] "which" "who" "whom" "this" "that"
[36] "these" "those" "am" "is" "are"

5

[41] "was" "were" "be" "been" "being"
[46] "have" "has" "had" "having" "do"
[51] "does" "did" "doing" "would" "should"
[56] "could" "ought" "i'm" "you're" "he's"
[61] "she's" "it's" "we're" "they're" "i've"
[66] "you've" "we've" "they've" "i'd" "you'd"
[71] "he'd" "she'd" "we'd" "they'd" "i'll"
[76] "you'll" "he'll" "she'll" "we'll" "they'll"
[81] "isn't" "aren't" "wasn't" "weren't" "hasn't"
[86] "haven't" "hadn't" "doesn't" "don't" "didn't"
[91] "won't" "wouldn't" "shan't" "shouldn't" "can't"
[96] "cannot" "couldn't" "mustn't" "let's" "that's"
[101] "who's" "what's" "here's" "there's" "when's"
[106] "where's" "why's" "how's" "a" "an"
[111] "the" "and" "but" "if" "or"
[116] "because" "as" "until" "while" "of"
[121] "at" "by" "for" "with" "about"
[126] "against" "between" "into" "through" "during"
[131] "before" "after" "above" "below" "to"
[136] "from" "up" "down" "in" "out"
[141] "on" "off" "over" "under" "again"
[146] "further" "then" "once" "here" "there"
[151] "when" "where" "why" "how" "all"
[156] "any" "both" "each" "few" "more"
[161] "most" "other" "some" "such" "no"
[166] "nor" "not" "only" "own" "same"
[171] "so" "than" "too" "very" "will"

In addition, you could create your own list of words by simply creating a vector of words (or importing a list
from an external file).
Create a list of words to exclude
days_week <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")

Exclude words from stopwords list
nk_tokens_no_stopwords <- tokens_remove(nk_lower_tokens, stopwords("en", "snowball"))
head(nk_lower_tokens[[7]], 20) # with stopwords

[1] "rodong" "sinmun" "today" "comments"
[5] "on" "the" "unjustifiable" "agreement"
[9] "of" "the" "national" "congress"
[13] "for" "new" "politics" "the"
[17] "united" "liberal" "democrats" "and"
head(nk_tokens_no_stopwords[[7]], 20) # without stopwords

[1] "rodong" "sinmun" "today" "comments"
[5] "unjustifiable" "agreement" "national" "congress"
[9] "new" "politics" "united" "liberal"
[13] "democrats" "grand" "national" "party"
[17] "south" "korea" "push" "ahead"
Exclude words from custom made list
nk_tokens_no_stopwords <- tokens_remove(nk_tokens_no_stopwords, days_week)

The final step of the pre-processing stage involves stemming or lemmatizing your corpus. Both approaches
reduce the size of our data, as words that would be considered different in an un-stemmed corpus (e.g. win,

6

winner and winning), would become the same word. Stemming can be done faily quickly, but it is more prone
to error. Lemmatizing is more computationally intensive, but much more accurate.

As we saw earlier, we can use the tokens_wordstem() command to stem a sentence, a text, or a quanteda
corpus. By default, quanteda assumes we are stemming an English language text, but it is possible to use the
argument language to specify an alternative language from the list you have above.
Stemming
nk_tokens_stemmed <- tokens_wordstem(nk_tokens_no_stopwords)
head(nk_tokens_stemmed[[7]], 20)

[1] "rodong" "sinmun" "today" "comment" "unjustifi" "agreement"
[7] "nation" "congress" "new" "polit" "unit" "liber"
[13] "democrat" "grand" "nation" "parti" "south" "korea"
[19] "push" "ahead"

Lemmatizing involves using previously trained models of a language that make it possible to identify what
part of speech a given word is, or to disambiguate when a word might have different meanings. This is, as you
might imagine, a much more computationally intense process than stemming, which we were able to complete
rather fast. There’s no function in quanteda to lemmatize a corpus, but we can lean on the udppipe package
to do so. Because this is a somewhat more complex process, I will not be covering it in this lab.

Part 3 - DFM creation

Step 5: Converting features to quantitative matrices In quanteda, the data structure used to fit
statistical models for text analysis is the document feature matrix (DFM). This is just one way to represent
data in the bag-of-words-approach. Let’s first use the dfm() command to create a DFM from the stemmed
tokens object that we saved early on.
DFM fromm a stemmed tokens object
nk_dfm_stemmed <- dfm(nk_tokens_stemmed)

For illustration, we are going to create several DFMs to compare the impact of different types of pre-processig on
their size. We will create 4 DFMs: nk_tokens (unprocessed tokenized version of our corpus) named nk_dfm1,
nk_lower_tokens (tokenized version of the corpus in lower case) named nk_dfm2, nk_tokens_no_stopwords
(tokenized version with no stop words) named nk_dfm3, and, finally, nk_tokens_stemmed (tokenized, pre-
processed, stemmed without stopwords) named nk_dfm. Compare the number of features in each DFM
Step 1 - Creates DFM from tokens objects
nk_dfm1 <- dfm(nk_tokens, tolower = FALSE)
nk_dfm2 <- dfm(nk_lower_tokens)
nk_dfm3 <- dfm(nk_tokens_no_stopwords)
nk_dfm <- dfm(nk_tokens_stemmed)

Step 2 - Compare number of features
nfeat(nk_dfm1)

[1] 29104
nfeat(nk_dfm2)

[1] 25209
nfeat(nk_dfm3)

[1] 25054
nfeat(nk_dfm)

[1] 16830

7

At each step of the way, the number of features in our DFM has been reduced. There’s one last step we can
take to decrease the number of words to make our analysis faster and to avoid unnecessary noise: trimming
the dfm object. When we trim a dfm, we remove features that either occur very frequently (e.g. 95% of
documents) or very rarely (e.g. less than 1% of documents). The dfm_trim allows to specify these percentages,
and use other criteria to limit the size of our dfm, such as the absolute maximum or minimum number of
times a word occurs in the corpus.

To exemplify this, let’s print the top 50 occurring words in the nk_dfm object by using the topfeatures()
command.
Most frequently occurring words
topfeatures(nk_dfm, 50)

korean peopl kim nation dprk
6069 5903 5457 4735 4329
il countri korea south jong
3938 3416 3251 3158 3037
parti war presid militari work
2383 2126 2024 1891 1849
said develop great forc u.
1843 1838 1801 1734 1722
year us reunif sung committe
1707 1663 1656 1643 1480
revolutionari made pyongyang japan world
1476 1396 1395 1367 1327
general organ north build armi
1317 1299 1277 1268 1262
leader independ make peac power
1259 1253 1246 1224 1216
new includ intern polit worker
1189 1166 1154 1150 1112
japanes x relat nuclear offici
1101 1100 1073 1063 1051

Given that our corpus has 3,000 documents, some of these terms might be appearing on almost every single
document. A word that appears in all documents is a word that has no discriminative power; the same
applies for words that are so unique that only “describe” one document.
Compare different trims of nk_dfm
nk_dfm_trimmed1 <- dfm_trim(nk_dfm,

max_docfreq = 1250)

nk_dfm_trimmed2 <- dfm_trim(nk_dfm,
min_docfreq = 0.1)

nk_dfm_trimmed3 <- dfm_trim(nk_dfm,
min_termfreq = 10,
max_termfreq = 100)

nk_dfm_trimmed4 <- dfm_trim(nk_dfm,
min_termfreq = 100,
max_termfreq = 1000)

nfeat(nk_dfm_trimmed1)

[1] 16823

8

nfeat(nk_dfm_trimmed2)

[1] 16830
nfeat(nk_dfm_trimmed3)

[1] 3521
nfeat(nk_dfm_trimmed4)

[1] 927
topfeatures(nk_dfm_trimmed1, 20)

il south jong parti war
3938 3158 3037 2383 2126
presid militari work said develop
2024 1891 1849 1843 1838
great forc u. year us
1801 1734 1722 1707 1663
reunif sung committe revolutionari made
1656 1643 1480 1476 1396
topfeatures(nk_dfm_trimmed2, 20)

korean peopl kim nation dprk il countri korea
6069 5903 5457 4735 4329 3938 3416 3251
south jong parti war presid militari work said
3158 3037 2383 2126 2024 1891 1849 1843
develop great forc u.
1838 1801 1734 1722
topfeatures(nk_dfm_trimmed3, 20)

anti-reunif meanwhil bear shape premier taekwon-do
100 100 100 100 100 100
victim mansuda defens remov sacr root
100 99 99 99 99 99
contain juche-ori literatur intend session block
99 99 99 98 98 98
date describ
98 98
topfeatures(nk_dfm_trimmed4, 20)

product time govern caus effort central idea day
993 985 972 961 947 941 931 922
juch visit achiev revolut present foreign unit declar
922 919 916 914 905 902 898 894
one perform secretari socialist
892 886 878 864

As shown in the top 20 most frequent words for each of the four trims we have identified, our choice of how
to limit the size of the DFM will have quite an impact on the data we will be using to analyze our texts,
and to fit our models. There is no one solution that fits all cases, so you will need to play around with the
settings until you find one that fits best to the data that you have.

9

Part 4 - Descriptive statistics for a corpus

We have reached the final two steps in our seven step approach to using quanteda to analyze text data. As
you will soon discover, the last two steps are often the ‘easiest’ ones.

Steps 5 & 6: Analize text data and summarize/interpret the results With quanteda you can
compute several descriptive measures of your texts including word frequencies (absolute and relative, lexical
diversity, feature similarity. . .). Instructions on how to compute some of these metrics can be found here.

To conclude this lab, we will come back to the RQs that we put forward at the very beginning, and use our
data to provide an answer.

1. What are the most frequently used words in news stories by KCNA and PT between 1997 and 2014?

We already know that we can retrieve top words from a dfm using the topfeatures() command. We can
get additional information, and we can retrieve data for two different groups (KCAN and PT, for example)
by using the texstat_frequency() command. Because we spent some time at the very beginning of this lab
adding metadata to our corpus, now we can use that metadata (quanteda’s docvars) to summarize the data
for us.

We are going to compare the two sources (metadata stored in a docvar called ‘SC’), and for each source, we
are going to get the top 20 features.
#install.packages("quanteda.textstats")
#install.packages("quanteda.textplots")
library(quanteda.textstats)
library(quanteda.textplots)
tstat_freq <- quanteda.textstats::textstat_frequency(nk_dfm, n = 20, groups = SC)
head(tstat_freq, 40)

feature frequency rank docfreq group
1 kim 3109 1 995 KCNA
2 korean 3072 2 1101 KCNA
3 peopl 2919 3 1140 KCNA
4 dprk 2475 4 947 KCNA
5 il 2340 5 794 KCNA
6 nation 2200 6 867 KCNA
7 south 1859 7 581 KCNA
8 jong 1857 8 726 KCNA
9 korea 1848 9 928 KCNA
10 u. 1722 10 426 KCNA
11 countri 1537 11 832 KCNA
12 parti 1233 12 553 KCNA
13 presid 1075 13 595 KCNA
14 said 1054 14 683 KCNA
15 forc 1029 15 492 KCNA
16 reunif 996 16 362 KCNA
17 war 995 17 388 KCNA
18 great 965 18 528 KCNA
19 committe 914 19 504 KCNA
20 sung 890 20 496 KCNA
21 korean 2997 1 711 PT
22 peopl 2984 2 734 PT
23 nation 2535 3 670 PT
24 kim 2348 4 560 PT
25 countri 1879 5 678 PT
26 dprk 1854 6 568 PT

10

https://tutorials.quanteda.io/statistical-analysis/

27 il 1598 7 451 PT
28 us 1581 8 324 PT
29 korea 1403 9 550 PT
30 south 1299 10 317 PT
31 develop 1192 11 488 PT
32 jong 1180 12 412 PT
33 parti 1150 13 359 PT
34 year 1144 14 518 PT
35 war 1131 15 313 PT
36 militari 1130 16 330 PT
37 x 1100 17 1100 PT
38 work 969 18 469 PT
39 pyongyang 956 19 433 PT
40 presid 949 20 346 PT

The table above provides both the number of times each feature is used, and the number of documents that
contain each feature. We could use this information to compute relative frequencies, and plot them using the
ggplot package. The chunk of code below weights the dfm (word frequency/total number of words), and
uses that information to generate a plot that compares the top 20 words used by KCNA and PT.
library(ggplot2)
nk_dfm_weighted <- nk_dfm %>%

dfm_group(groups = SC) %>%
dfm_weight(scheme = "prop")

relative_frequencies <- textstat_frequency(nk_dfm_weighted, n = 20, groups = SC)

ggplot(data = relative_frequencies, aes(x = factor(nrow(relative_frequencies):1), y = frequency)) +
geom_point() +
facet_wrap(~ group, scales = "free") +
coord_flip() +
scale_x_discrete(breaks = nrow(relative_frequencies):1,

labels = relative_frequencies$feature) +
labs(x = NULL, y = "Relative frequency")

11

KCNA PT

0.004 0.006 0.008 0.010 0.012 0.014 0.005 0.007 0.009 0.011

korean

peopl

nation

kim

countri

dprk

il

us

korea

south

develop

jong

parti

year

war

militari

x

work

pyongyang

presid

kim

korean

peopl

dprk

il

nation

south

jong

korea

u.

countri

parti

presid

said

forc

reunif

war

great

committe

sung

Relative frequency

Unsurprisingly, there is very little difference in the most frequently used words of KCNA and PT, both
of which are Party/State-controlled media. Any differences here in relative frequencies, would need to be
tested statistically before we could make any inferences of the entire population. Remember, we only used a
relatively small sample of articles for this analysis.

2. Are there differences in the words used by KCNA and PT in news stories mentioning Russia and Japan?

To answer this question, we are first going to use a simple visualization: a wordcloud of absolute frequencies
to compare articles mentioning Russia to those mentioning Japan. The approach here is very similar to the
one we used to plot KCNA and PT frequencies. First, we want to “group” our nk_dfm by a new docvar called
mentions that tell us whether an article mentions Japan, Russia, both or neither. Earlier on we created
columns with mentions for Russia and Japan. We can use these with the verb mutate and the command
case_when to create the new variable based on four conditions.
df <- df %>%

mutate(mentions = case_when(mention_japan == TRUE & mention_russia != TRUE ~ "Japan",
mention_japan != TRUE & mention_russia == TRUE ~ "Russia",
mention_japan == TRUE & mention_russia == TRUE ~ "Russia & Japan",
TRUE ~ "No mention"))

nk_dfm$mentions <- df$mentions # Adds the docvar to the dfm object

Now that we have this new variable, we can group the texts into one of these four categories. When we group
a dfm we change the documentary unit from each article to each group. So, basically, we will have four very
large documents, one with ALL articles that mention Japan, one with ALL the articles that mention Russia,
and one each for those mentioning both countries, and those not mentioning either of them. We can see that
when we use the head() command.
Create a grouped dfm and compare groups
nk_dfm_compare <- dfm_group(nk_dfm, groups = mentions)

12

head(nk_dfm_compare)

Document-feature matrix of: 4 documents, 16,830 features (56.43% sparse) and 4 docvars.
features
docs rodong sinmun today comment militarist utter made former
Japan 50 50 73 12 54 7 300 57
No mention 162 164 192 39 1 39 973 107
Russia 4 4 15 1 1 2 83 6
Russia & Japan 2 2 4 3 7 0 40 10
features
docs director general
Japan 57 279
No mention 218 886
Russia 44 104
Russia & Japan 8 48
[reached max_nfeat ... 16,820 more features]

As you can see, now we only have 4 ‘docs’, one called Japan, one called Russia, one called Russia & Japan
and one called No mention. Each “document” (group all the articles) contains the sum of all term frequencies.
We can now use this DFM to create a comparative wordcloud.
Create worcloud
set.seed(132)
textplot_wordcloud(nk_dfm_compare, comparison = TRUE, max_words = 130, color = c("blue", "green", "salmon", "purple"))

Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
leadership could not be fit on page. It will not be plotted.

Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
front could not be fit on page. It will not be plotted.

Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
polit could not be fit on page. It will not be plotted.

Warning in wordcloud_comparison(x, min_size, max_size, min_count, max_words, :
shale could not be fit on page. It will not be plotted.

JapanNo mention

Russia Russia & Japan

ru
ss

ia
n

japanrussia
japanes

dprk

south

korean

map
artjong

kimil basket

w
ar

friendship
cooper

perform ko
re

a

presid

troup

forc

revolutionari

m
ili

ta
ri

april

region

festiv
flower

prize
film

pyongyang

foreign

juch
east

re
un

if

anti−japanes

sung

asiaco
un

tr
i

member

histori

relat

u.

govern

liber

north

statu

said

islet

women

product

minist

embassi

idea

feder

am
ba

ss
ad

or

oversea

develop

deleg

leader

past

song

centuri

sea

territori

danc

congratulatori

visit

talk

artist
success

ch
ai

rm
an

committe

chongryon

ag
en

c

island

us ch
in

a

intern

worker

oil

nuclear

young

imperialist

martyr

struggl

ministri

farm

crime

studio

right

revolut

two

gas

mark

parti

suk

ku
ril

reactionari

institut
nation

director

offici

organ

person

world

photo

move

victori

took

friend

fatherland

laid

concern

armi

th
ea

tr

studi

associ

secretari

award

occas

issu

articl
compani

construct
declar

audienc

13

If you look carefully, you can see that the words associated with Japan are much more belligerent (anti-
japanese, aggressive, imperialisti, war, military. . .), while those used in articles about Russia are more
amicable (cooperation, embassy, visit. . .).

You could now compare the actual counts of words, by using the texstat_frequency command we saw
earlier.
Get a table with frequencies
relative_frequencies <- textstat_frequency(nk_dfm_compare, n = 30, groups = mentions)
relative_frequencies

feature frequency rank docfreq group
1 korean 1926 1 1 Japan
2 peopl 1415 2 1 Japan
3 japan 1245 3 1 Japan
4 kim 1229 4 1 Japan
5 nation 1154 5 1 Japan
6 japanes 1014 6 1 Japan
7 korea 962 7 1 Japan
8 dprk 905 8 1 Japan
9 il 899 9 1 Japan
10 countri 813 10 1 Japan
11 war 772 11 1 Japan
12 militari 725 12 1 Japan
13 revolutionari 595 13 1 Japan
14 forc 581 14 1 Japan
15 jong 577 15 1 Japan
16 south 561 16 1 Japan
17 parti 539 17 1 Japan
18 us 532 18 1 Japan
19 sung 494 19 1 Japan
20 presid 482 20 1 Japan
21 organ 419 21 1 Japan
22 armi 418 22 1 Japan
23 work 390 23 1 Japan
24 u. 372 24 1 Japan
25 great 359 25 1 Japan
26 year 353 26 1 Japan
27 said 352 27 1 Japan
28 revolut 334 28 1 Japan
29 nuclear 334 28 1 Japan
30 issu 332 30 1 Japan
31 peopl 4004 1 1 No mention
32 korean 3657 2 1 No mention
33 kim 3607 3 1 No mention
34 nation 3228 4 1 No mention
35 dprk 2969 5 1 No mention
36 il 2557 6 1 No mention
37 south 2509 7 1 No mention
38 countri 2231 8 1 No mention
39 jong 2072 9 1 No mention
40 korea 2054 10 1 No mention
41 parti 1653 11 1 No mention
42 develop 1396 12 1 No mention
43 work 1319 13 1 No mention

14

44 said 1298 14 1 No mention
45 presid 1297 15 1 No mention
46 reunif 1282 16 1 No mention
47 great 1279 17 1 No mention
48 u. 1278 18 1 No mention
49 year 1235 19 1 No mention
50 war 1200 20 1 No mention
51 committe 1069 21 1 No mention
52 forc 1047 22 1 No mention
53 north 1033 23 1 No mention
54 militari 980 24 1 No mention
55 sung 974 25 1 No mention
56 made 973 26 1 No mention
57 pyongyang 962 27 1 No mention
58 us 959 28 1 No mention
59 world 937 29 1 No mention
60 peac 917 30 1 No mention
61 kim 431 1 1 Russia
62 dprk 377 2 1 Russia
63 peopl 339 3 1 Russia
64 il 335 4 1 Russia
65 russian 304 5 1 Russia
66 korean 294 6 1 Russia
67 jong 282 7 1 Russia
68 countri 258 8 1 Russia
69 russia 242 9 1 Russia
70 nation 223 10 1 Russia
71 presid 157 11 1 Russia
72 said 144 12 1 Russia
73 develop 128 13 1 Russia
74 perform 127 14 1 Russia
75 korea 124 15 1 Russia
76 leader 122 16 1 Russia
77 parti 119 17 1 Russia
78 great 111 18 1 Russia
79 committe 109 19 1 Russia
80 us 109 19 1 Russia
81 work 106 21 1 Russia
82 friendship 105 22 1 Russia
83 intern 105 22 1 Russia
84 sung 105 22 1 Russia
85 general 104 25 1 Russia
86 militari 103 26 1 Russia
87 cooper 103 26 1 Russia
88 visit 100 28 1 Russia
89 world 99 29 1 Russia
90 foreign 98 30 1 Russia
91 korean 192 1 1 Russia & Japan
92 kim 190 2 1 Russia & Japan
93 il 147 3 1 Russia & Japan
94 peopl 145 4 1 Russia & Japan
95 nation 130 5 1 Russia & Japan
96 japan 122 6 1 Russia & Japan
97 countri 114 7 1 Russia & Japan

15

98 korea 111 8 1 Russia & Japan
99 jong 106 9 1 Russia & Japan
100 war 92 10 1 Russia & Japan
101 presid 88 11 1 Russia & Japan
102 japanes 87 12 1 Russia & Japan
103 militari 83 13 1 Russia & Japan
104 dprk 78 14 1 Russia & Japan
105 parti 72 15 1 Russia & Japan
106 sung 70 16 1 Russia & Japan
107 revolutionari 69 17 1 Russia & Japan
108 art 69 17 1 Russia & Japan
109 us 63 19 1 Russia & Japan
110 pyongyang 62 20 1 Russia & Japan
111 russia 61 21 1 Russia & Japan
112 map 58 22 1 Russia & Japan
113 leader 54 23 1 Russia & Japan
114 foreign 54 23 1 Russia & Japan
115 great 52 25 1 Russia & Japan
116 juch 51 26 1 Russia & Japan
117 basket 51 26 1 Russia & Japan
118 said 49 28 1 Russia & Japan
119 intern 49 28 1 Russia & Japan
120 organ 49 28 1 Russia & Japan

The list of absolute counts confirms what we could see in the wordcloud, words like “armi”, “war”, “militari”
and “forc” are among the top 30 most frequently occurring words in texts about Japan, but most are missing
from the list for Russia. Instead, we find words like “develop”, “friendship”, “visit” and “cooper”.

We could now use these word counts (or relative word counts) to test whether these differences we observe in
the sample are statistically significant, and thus descriptive of the entire population.

16

	Installing packages, and setting the enrvironment up
	Part 1 - Importing some documents and creating a corpus with some additional metadata
	Part 2 - Pre-processing documents in a corpus
	Part 3 - DFM creation
	Part 4 - Descriptive statistics for a corpus

