IPSA NUS - Day 4

Topic Classification - Naïve Bayes Classifier

Dani Madrid-Morales (with code from content-analysis-with-r.com)

In today's class we will learn the process of using a pre-labeled dataset to train a Naïves Bayes Classifier. We will have a "simple" example, and then we'll work through a much more complex one that reproduces all the stages, decisions and nuances of doing machine learning.

The process of building a classifier works like this:

- 1. You will need to have some documents that are already classified. That is, documents with labels.
- 2. You will split those documents in 2 groups training set and testing set.
- 3. You will apply the nb classifier on the first group, and test it on the second group.
- 4. You will repeat the process as many times as needed until you are good to go.

Part 1 - Basic Naïve Bayes Classifier

We will need some new packages to run today's code, so let's get them all at once. You might need to uncomment the first few lines if you don't have those packages on your own computer. Make sure you have devtools in your computer before you proceed. Check the results carefully, as missing one single package will affect the overall performance of the code.

Let's start with a classifier of comments posted on reddit, a social media platform where users can post pretty much anything on almost any topic using subreddits. We are going to use data from two very subreddits, one about the Civil War in Syria, and one about Science. The data, which is available from https://content-analysis-with-r.com/, is saved in a file called reddit.RData

```
# The file contains a quanteda corpus, and the full dataset
load("reddit.RData")
glimpse(reddit.stats)
```

```
## Rows: 20,603
## Columns: 20
## $ Text
                    <fct> science1, science2, science3, science4, scien...
## $ Types
                    <int> 41, 23, 15, 33, 53, 3, 7, 66, 42, 38, 22, 5, ...
                    <int> 53, 30, 16, 44, 75, 3, 10, 84, 52, 57, 26, 5,...
## $ Tokens
                    <int> 7, 3, 2, 4, 6, 1, 3, 4, 2, 3, 2, 1, 1, 1, 6, ...
## $ Sentences
                    <chr> "1", "1_1", "1_1", "1_2", "1_2_1", "1_2_1_1...
## $ structure
                    <date> 2009-12-01, 2009-12-01, 2009-12-01, 2009-12-...
## $ post_date
## $ comm_date
                    <date> 2009-12-01, 2009-12-02, 2009-12-02, 2009-12-...
                    <dbl> 3646, 3646, 3646, 3646, 3646, 3646, 3646, 364...
## $ num_comments
                    <chr> "science", "science", "science", "science", "...
## $ subreddit
                    <dbl> 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.8...
## $ upvote_prop
## $ post_score
                    ## $ author
                    <chr> "peteyH", "peteyH", "peteyH", "peteyH", "pete...
## $ user
                    <chr> "[deleted]", "ionstorm66", "ac3raven", "syste...
                    <dbl> 407, 192, 11, 51, 37, 9, 11, 6, 4, 3, 187, 98...
## $ comment_score
<chr> "What is the single scientific discovery you ...
## $ title
## $ post_text
                    <chr> "Please identify one and elaborate if you hav...
                    <chr> "https://www.reddit.com/r/science/comments/a9...
## $ link
                    <chr> "self.science", "self.science", "self.science...
## $ domain
                    <chr> "http://www.reddit.com/r/science/comments/a9z...
## $ URL
```

```
reddit.corpus <- corpus(reddit.stats, text_field = "post_text")</pre>
reddit.corpus
## Corpus consisting of 20,603 documents and 19 docvars.
## text1 :
## "Please identify one and elaborate if you have to. Upvote tho..."
##
## "Please identify one and elaborate if you have to. Upvote tho..."
## text3 :
## "Please identify one and elaborate if you have to. Upvote tho..."
##
## text4 :
## "Please identify one and elaborate if you have to. Upvote tho..."
## "Please identify one and elaborate if you have to. Upvote tho..."
##
## text6:
## "Please identify one and elaborate if you have to. Upvote tho..."
## [ reached max_ndoc ... 20,597 more documents ]
head(docvars(reddit.corpus), 5)
##
         Text Types Tokens Sentences structure post_date comm_date
                        53
                                   7
                                              1 2009-12-01 2009-12-01
## 1 science1
                 23
## 2 science2
                        30
                                   3
                                            1_1 2009-12-01 2009-12-02
## 3 science3
                        16
                                          1 1 1 2009-12-01 2009-12-02
                 15
                                   2
                        44
## 4 science4
                 33
                                   4
                                            1 2 2009-12-01 2009-12-01
## 5 science5
                 53
                        75
                                   6
                                          1_2_1 2009-12-01 2009-12-01
    num_comments subreddit upvote_prop post_score author
## 1
             3646
                    science
                                   0.89
                                                857 peteyH
                                                             [deleted]
## 2
             3646
                    science
                                   0.89
                                                857 peteyH ionstorm66
## 3
             3646
                                   0.89
                                                857 peteyH
                    science
                                                              ac3raven
## 4
             3646
                    science
                                   0.89
                                                857 peteyH systemghost
## 5
             3646
                    science
                                   0.89
                                                857 peteyH
                                                             [deleted]
##
     comment_score controversiality
## 1
               407
                                  0
## 2
               192
                                  0
                                  0
## 3
                11
## 4
                51
                                  0
## 5
                37
                                  0
##
                                                                                title
## 1 What is the single scientific discovery you most want to see in your lifetime?
## 2 What is the single scientific discovery you most want to see in your lifetime?
## 3 What is the single scientific discovery you most want to see in your lifetime?
## 4 What is the single scientific discovery you most want to see in your lifetime?
## 5 What is the single scientific discovery you most want to see in your lifetime?
## 1 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
## 2 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
## 3 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
```

```
## 4 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
## 5 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
## domain
## 1 self.science
## 2 self.science
## 3 self.science
## 4 self.science
## 5 self.science
## 5 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 1 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 3 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 4 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 5 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 5 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
## 5 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?re
```

From the output above, we know that this corpus has over 20,000 documents. In the docvars, there's a column called subreddit that classifies the posts into either sicence or syriancivilwar. We are going to use this labels to train a model that would classify unseen comments on reddit into one of the two categories. Because this is a pretty large corpus, and it would take us a long time to train a model, we will work with a smaller subsample of 2,000 comments. The corpus_sample function in quanteda allows to do so.

```
# Random sample of 2,000 items in the Reddit corpus
set.seed(80) # Setting a seed guarantees next time I will get the same random sample
sample.reddit.corpus <- corpus_sample(reddit.corpus, size = 2000)</pre>
```

In this example we will split our labeled dataset into 1,500 comments as the training set that we will use to build a Naive Bayes classifier. In a second step, we will try to successfully predict the sentiment for the remaining reviews (our test set).

```
# We generate 1500 numbers without replacement
id_train <- sample(1:2000, 1500, replace = FALSE) # Sample the range 1 to 2000, select 1500, do not rep
head(id_train, 10) # Show us the first 10 numbers you extracted
```

The numbers above are the top 10 randomly extracted numbers. We are going to use these numbers to select documents in the corpus.

Next, we are going to create a new document variable (docvar) in my corpus. This variable ("id_numeric") is just a number that I can then compare to the numbers I randomly sampled. This way I could make the selection of cases that will be in my training dataset, and the cases that will be in my test dataset.

The outcome here should be two DFMs (remember, a DFM is a matrix with Documents and Features), one with the training set and one with the test set.

```
# Create docvar with ID (= number from 1 to 2000)
docvars(sample.reddit.corpus, "id_numeric") <- 1:ndoc(sample.reddit.corpus)

# Get training set by subsetting the corpus using randomly sampled numbers as criterion
dfmat_training <- corpus_subset(sample.reddit.corpus, id_numeric %in% id_train) %>%
    tokens(remove_symbols = TRUE, remove_punct = TRUE, remove_numbers = TRUE, remove_url = TRUE) %>%
    dfm(stem = TRUE) %>%
    dfm_remove(stopwords("english"))

# Get test set (documents not in id_train)
dfmat_test <- corpus_subset(sample.reddit.corpus, !id_numeric %in% id_train) %>%
    tokens(remove_symbols = TRUE, remove_punct = TRUE, remove_numbers = TRUE, remove_url = TRUE) %>%
    dfm(stem = TRUE) %>%
```

```
dfm_remove(stopwords("english"))
```

Next we are ready to train the Naïve Bayes classifier using the function textmodel_nb(). This function takes two arguments: 1. The DFM of the training set 2. The variable (corpus metadata, or docvar in quanteda) that has the labels.

When we run this, the algorithm will compute the probability of word n being in category c. And, if we print the summary of the model, we will get a matrix, with words and categories.

```
tmod_nb <- textmodel_nb(dfmat_training, docvars(dfmat_training, "subreddit"))
summary(tmod_nb)</pre>
```

```
##
## Call:
  textmodel_nb.dfm(x = dfmat_training, y = docvars(dfmat_training,
##
       "subreddit"))
##
  Class Priors:
##
   (showing first 2 elements)
##
          science syriancivilwar
##
##
##
  Estimated Feature Scores:
##
                      accord
                                   lot
                                            sourc
                                                       morn
                                                               offens
                                                                          launch
                  0.0001838 0.0001838 0.0001838 0.0001838 0.0001838
##
  science
  syriancivilwar 0.0034671 0.0016836 0.0049507 0.0006001 0.0052674 0.0024670
##
                                n-hama
                                          captur territori
                                                                 held
                         saa
## science
                  0.0001838 \ 0.0001838 \ 0.0001838 \ 0.0001838 \ 0.0001838 \ 0.0001838
  syriancivilwar 0.0053841 0.0006001 0.0038672 0.0006001 0.0011835 0.0115682
##
##
                                                      time
                                            free
## science
                  0.0001838 0.0001838 0.0001838 0.001471 0.0001838 0.0001838
## syriancivilwar 0.0006001 0.0011001 0.0047173 0.003634 0.0015669 0.0006001
##
                        make megathread
                                                        peto
                                               map
                                                                  lucem
                  0.0001838
                              0.0001838 0.0001838 0.0001838 0.0001838
  syriancivilwar 0.0022670
                              0.0019836 0.0067842 0.0011835 0.0011835
##
                       area
                                  hour
                                             ago pro-regim
                                                                claim
                                                                          latmin
## science
                  0.0001838\ 0.0001838\ 0.0001838\ 0.0001838\ 0.0001838\ 0.0001838
## syriancivilwar 0.0030504 0.0010668 0.0006001 0.0017669 0.0036338 0.0023503
##
                       regim
                  0.0001838
## science
## syriancivilwar 0.0056174
```

Let's explore these results in a bit more detail. We are told that we ran a NB Classifier, assuming class priors of .5 and .5 (you could adjust that if needed with an additional argument in textmodel_nb). Then we get some words and, for each word, the probability assigned to it by the algorithm. These probabilites are the likelihood of a word appearing in documents of a certain label.

Naïve Bayes can only take features into consideration that occur both in the training set and the test set, but we can make the features identical by passing training_dfm to dfm_match() as a pattern.

```
dfmat_matched <- dfm_match(dfmat_test, features = featnames(dfmat_training))</pre>
```

We are now ready to use these probabilities to try to predict the label of the remaining documents in the dataset. So, remember, we divided our 2,000 labeled comments into a training and test dataset. Now we are going to ask quanteda to predict the categories of the test dataset (n = 500) and then we will compare these predictions to the actual labels that we have.

To apply an NB to an unseen dataset, we use the function predict. This takes two arguments:

1. Argument 1 is the result of the probabilites that we computed earlier (that is, our model). 2. A new dataset unseen by the algorithm that we want to classify.

```
# Create a simple dataframe with the TRUE labels of the test set that we can use later
actual_class <- docvars(dfmat_matched, "subreddit")

# Predict the categories using the NB model we trained
predicted_class <- predict(tmod_nb, newdata = dfmat_matched)</pre>
```

Let's inspect how well the classification worked. For this, we are creating a table with the actual labels we stored before, the results of the predict function.

```
tab_class <- table(actual_class, predicted_class)
tab_class</pre>
```

```
## predicted_class
## actual_class science syriancivilwar
## science 267 0
## syriancivilwar 85 148
```

In the confusion matrix above, we see that the algorithm did relatively well. We can use the function confusionMatrix() from the caret package to assess the performance of the classification.

```
confusionMatrix(tab_class, mode = "everything")
```

```
## Confusion Matrix and Statistics
##
##
                   predicted_class
## actual_class
                    science syriancivilwar
##
     science
                         267
     syriancivilwar
                         85
                                        148
##
##
##
                  Accuracy: 0.83
##
                    95% CI: (0.7941, 0.8619)
       No Information Rate: 0.704
##
##
       P-Value [Acc > NIR] : 5.714e-11
##
##
                     Kappa: 0.6503
##
    Mcnemar's Test P-Value : < 2.2e-16
##
##
##
               Sensitivity: 0.7585
##
               Specificity: 1.0000
##
            Pos Pred Value: 1.0000
##
            Neg Pred Value: 0.6352
                 Precision: 1.0000
##
##
                    Recall: 0.7585
##
                        F1: 0.8627
##
                Prevalence: 0.7040
            Detection Rate: 0.5340
##
      Detection Prevalence: 0.5340
##
##
         Balanced Accuracy: 0.8793
##
          'Positive' Class : science
##
##
```

The model seems to be relatively robust with measures of precision around .8. In a real research context, we would repeat this operation multiple times, we different folds of the training set and test set, until we reached an even higher level of accuracy, precision and recall. We would then use this one trained model to a larger unseen dataset.

Part 2 - Fitting a NB in the "real" world

Your job as a computational social scientist is unlikely to be this easy most of the time. Usually you will be faced with lots of choices and difficulties in getting all your data ready.

The next example is a *lot more complex* and requires more input on the side of the researcher to achieve a good score in the precision metrics.

There are a lot of required files for this exercise, so if you are going to run this on your own computer, make sure you have downloaded all of them, and that they are saved in the correct location. Otherwise you are likely to encounter errors as you go through the code.

The starting point here is to load the unlabeled set of documents. The file "cctvnewscontent_lab4.csv" includes the transcript of over 13,000 news stories broadcast on China's State Broadcaster CCTV's global branch, now called CGTN. We are going to try to classify these stories using an NB model trained using a smaller sample of pre-labeled data.

To get started, we read the document (a .csv file) using the fread function from the data.table package, which we have used before.

```
cctv.unlabeled <- fread("cctvnewscontent_lab4.csv")</pre>
```

The dataset contains over 230 variables that we do not need to explore right now. I'll bring your attention to the variable wc which has a wordcount for each transcript. Because really short texts (less than 50 words) are going to be very difficult to classify, we will remove those first.

After we subset the dataset, we are ready to call the corpus function in quantedand pass the column name where the texts are stored as the source for the corpus.

```
# Uses base R to subset a dataframe, by year and wordcount (that is wc).
cctv_news <- subset(cctv.unlabeled, wc>50)
rm(cctv.unlabeled)
# Creates a simple quanteda corpus
cctv.corpus <- corpus(cctv_news$text)</pre>
```

We also want to create some metadata that might be useful for us at a later stage to do some analysis. In this next chunk of code, we are splitting up the dates into months, years, weeks and days. This can be done with the lubridate package.

The functions year, month and so on, take a full date (2019-12-03 o 2019/12/03 or 1-Dec-19, or pretty much any known format), and then extract the element that we are interested in.

We are then, adding this new variable as metadata of our newly created corpus.

```
#In the cctv.corpus, I add a new docvar called "date" which has the published date
docvars(cctv.corpus, "date") <- cctv_news$date.publish

#In the cctv.corpus, I add a new docvar called "year" which has the year extracted from the date
docvars(cctv.corpus, "year") <- year(docvars(cctv.corpus, 'date'))

# And so on.
docvars(cctv.corpus, "month") <- month(docvars(cctv.corpus, 'date'))
docvars(cctv.corpus, "week") <- week(docvars(cctv.corpus, 'date'))
docvars(cctv.corpus, "day") <- day(docvars(cctv.corpus, 'date'))</pre>
```

```
# We also add title as metadata in the corpus
docvars(cctv.corpus, "title") <- cctv_news$title

# And the locations cited in each news iem.
docvars(cctv.corpus, "locations") <- cctv_news$locations</pre>
```

We are now ready to tokenize our corpus. Remember, tokenizing separates each document into tokens (that is, words). We are also going to take this opportunity to clean the tokenized version of the corpus, by removing things like stopwords, punctuation and so on. To make the analysis easier for us, we are just

This might take a few seconds to run.

Let's have a look at one of the documents that has been tokenized, for example document 3433. We are going to print the first 25 words in this tokenized document.

```
head(cctv.toks[[3433]], 25)
```

```
[1] "Qinghai"
                                       "Carpet"
                                                      "Exhibit"
                                                                     "open"
                        "Internat"
##
  [6] "Xine"
                        "capit"
                                       "citi"
                                                      "northwest"
                                                                     "China"
                        "Provinc"
                                                      "businessmen"
                                                                     "home"
## [11] "Qinghai"
                                       "Monday"
## [16] "abroad"
                        "attend"
                                       "annual"
                                                      "event"
                                                                     "exhibit"
## [21] "area"
                        "booth"
                                       "Tibetan"
                                                      "carpet"
                                                                     "display"
```

As we know, the process of working with quanteda is that we first create a corpus, then we tokenize that corpus and then we create a DFM (document feature matrix) that can be used for most analyses. So, let's do that.

We are also going to lowercase our DFM, as we know this is an important step to reduce the dimensions of our DFM.

```
## [1] 49120
```

So, there are 12,940 documents and more than 49.000 words. This is too large of a number, so we are going to trim this DFM to make more manageable. According to Zipf's law,words that do not occur too often aren't really "important" for QTA, so we can remove words that occur less than a certain number of times and that appear in less than a certain number of documents.

These values are somewhat arbitrary. We could see which are the top occurring words to get an idea of general frequencies, and use that to determine how much we are going to trim our DFM

```
topfeatures(cctv.dfm, 10)
```

```
##
     china
               year
                      chines
                                peopl countri provinc
                                                             citi
                                                                      time
                                                                              water
##
     23846
              13646
                       11988
                                10750
                                           7941
                                                    7434
                                                             7165
                                                                      6593
                                                                               6528
##
     local
##
      6522
```

From this, we also see that China seems to be occurring very often. To correct for this, we could remove all mentions of countries from our DFM. Luckily for us, quanteda has a dictionary of countries in the package newsmap that we can pass to quanteda to remove the words.

```
# Removes mentions of a country
cctv.dfm <- dfm_remove(cctv.dfm,</pre>
                            dictionary(data_dictionary_newsmap_en))
# We can print the top features and see we let go of China and Chinese
topfeatures(cctv.dfm, 10)
##
            chines
                      peopl countri provinc
                                                 citi
                                                         time
                                                                 water
                                                                         local
##
     13646
             11988
                      10750
                               7941
                                        7434
                                                 7165
                                                         6593
                                                                  6528
                                                                          6522
##
    govern
      6233
##
# Trim the DFM to exclude words that occur less than 10 times
cctv.dfm <- dfm_trim(cctv.dfm, min_termfreq = 10)</pre>
# How many features (i.e. words) are there in my DFM after trimming?
nfeat(cctv.dfm)
```

[1] 9274

We have gone from more than 49.000 featuresm to 9,274, which is enough to get diversity and specificity in our DFM.

Now that we finished getting our corpus of interest ready we need to train an algorithm that we can then apply to this corpus to see what topic each of the documents belongs to.

For this process, I need to create a dataframe that has 2 things:

- 1. The text of the documents that are labeled
- 2. The labels of these documents

To get to this point, we are going to collect some Word files that have the text, and combine them with an Excel file that has the labels.

Let's start with importing the Word files to R. To do this, I am going to make a list of all the files, then I am going to write a loop that load the file to R, reads it, extracts the text and pastes it into a single dataframe

```
# Create a list of file names
list.transcripts.paths <- list.files(path="Texts/")

# Creates an empty object where I am going to store my text files
full.transcripts2012 <- c()

# A for loop that goes through the list of files in and extracts the text
for(i in list.transcripts.paths){ # Go through the list of file names
    file <- paste("Texts/",i,collapse="", sep = "") # Create a path where the file is stored
    transcript <- read_docx(file) # Read the file to R</pre>
```

```
transcript <- paste(transcript, collapse = " ") # Collapse or concatenate all the text into 1 long st
full.transcripts2012 <- paste(transcript, full.transcripts2012, collapse = " ") # Add it to my empty
}</pre>
```

The object list.transcripts.paths is just a list of file names. The object full.transcripts is now a VERY long character with ALL the text from the 56 Word files. This is of no use to us, so we are going to split this LONG character into 1199 shorter texts, each of which has the text of 1 news story.

Luckily for us, the beginning and end of each document is clearly marked with the words "ID -" or "ID -". Therefore, next we are going to have R look for these instances of either phrase and add a marker ("|") that we are then going to use to split the character object into smaller chunks one for each news story.

```
# We look for instances of ID - or ID - and use the marker \mid to substitute them
full.transcripts2012 <- str_replace_all(full.transcripts2012, fixed("ID -- "), "|")
full.transcripts2012 <- str_replace_all(full.transcripts2012, fixed("ID - "), "|")
# We tell R, split the long character "full.transcripts2012" into shorter strings using "/" to make the
a <- strsplit(full.transcripts2012, "[|]") # Creates a list
# We unlist "a" into a DF of one single column including each news item in one row
df <- data.frame(matrix(unlist(a), nrow=lengths(a), byrow=T))</pre>
colnames(df) <- "text" # Name this new column "text"</pre>
df$text <- str_replace_all(df$text, fixed("|"), "") # Remove the marker "|" from the text
# Each document has an ID number, and we are going extract it form the text
df$id <- substr(df$text,1,4) # Extract the first 4 characters of the text (which is where the ID is)
df$text <- substring(df$text,5) # Use the rest of content as the text
# Let's clean our R Environment and remove objects we no longer need
rm(a)
rm(full.transcripts2012)
rm(list.transcripts.paths)
rm(i)
# Let's have a look at what this new df looks like
head(df)
##
## 1
     Peninah: Hello and welcome to Africa Live. I'm Peninah Karibe. Let's take you live to South Afric
## 3
## 4
## 5
## 6
##
       id
## 1
## 2 1177
## 3 1178
## 4 1179
## 5 1180
## 6 1181
```

So we've created a df that has text and ID. Now we are missing the labels for each of these texts. These labels are stored in another Excel file that we are now going to merge to the one that includes the texts

```
# Read the CSV file with the labels
cgtn.dataset <- read.csv(file = "CCTVFullDatasetFromR.csv", colClasses=c("id"="character"))</pre>
# Remove the first column, which we don't need
cgtn.dataset$X <- NULL
# Merge the 2 datasets using "id" as the key to merge them
full.text.cgtn <- merge(cgtn.dataset[,c(1:106,407:414)], df[2:1200,], "id")
# Let's just keep the variables we are interested in
full.text.cgtn %<>%
  select(id,
           year,
           topic_name,
           text)
# Let's have a look at what the new full.text.cgtn df looks like
glimpse(full.text.cgtn)
## Rows: 1,199
## Columns: 4
                <chr> "0001", "0002", "0003", "0004", "0005", "0006", "00...
## $ id
## $ year
                <int> 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 201...
## $ topic_name <fct> "Military & Political Violence", "Crime, Legal & Ju...
                <chr> " We start in Syria where UN Arab League special en...
# Finally, let's clean our Environment of unnecessary variables
rm(cgtn.dataset)
rm(df)
rm(file)
rm(transcript)
```

So, our training dataset has 4 variables, one with the text ID, one with the year, one with the topic label assigned by human coders, and one with the text. Let's see which topics are included in this hand coded dataset

```
table(full.text.cgtn$topic_name)
```

```
##
##
  Crime, Legal & Judicial Matters
                                         Culture, Religion & Tourism
##
##
         Ecology & the Environment
                                                    Economic Matters
##
                                                                   273
##
         Foreign Affairs/Diplomacy
                                           Human Interest & Oddities
##
                                 132
                                                                   20
     Military & Political Violence
##
                                       Natural Disasters & Accidents
##
                                 163
                                                Science & Technology
##
           Politics within a State
##
                                 186
                                                                   15
                      Social Issues
##
                                                               Sports
##
                                                                  185
```

From the table above, we see that there's some topics that do not occur very often, while other occur quite often. So, we might want to reduce the dimensions of our labels, to have just 3 groups:

1. Political news (include diplomacy, domestic politics, and military and political violence, crime legal and judicial matters)

- 2. News about the economy (including economic matters, social issues and science and technology)
- 3. News about other topics

For this, we will need to recode our labels into a new variable, which we will code "label" that will take only 3 levels: politics, economy and others. To do this, we are going to use the case_when function, that allows us to give conditions to the recoding of a variable.

```
full.text.cgtn %<>%
  mutate(label = case_when(
    topic_name == "Politics within a State" ~ "politics",
    topic_name == "Military & Political Violence" ~ "politics",
    topic_name == "Foreign Affairs/Diplomacy" ~ "politics",
    topic_name == "Economic Matters"~ "economy",
    topic_name == "Science & Technology" ~ "economy",
    topic_name == "Social Issues" ~ "economy",
    TRUE ~ "sports & culture "))
```

```
## ## economy politics sports & culture ## 386 481 332
```

We now have three more or less balance categories, that we can use as labels to train our Naïve Bayes algorithm. Before we can do that, we need to turn this df with the texts and labels, into a corpus that quanteda is able to read for the NB classifier.

```
labeled.corpus <- corpus(full.text.cgtn)

# Let's add the labels we just created as docvars
docvars(labeled.corpus, "label") <- full.text.cgtn$label</pre>
```

As usual, let's tokenize the labeled dataset and do some cleaning by rmeoving punctuation, numbers, symbols and stop words, as well as the word CCTV which appears very often.

```
# We use "tokens" to tokenize the corpus
labeled.toks <- tokens(labeled.corpus,</pre>
                    remove_separators = TRUE,
                    remove_numbers = TRUE,
                    remove_punct = TRUE)
# We remove stopwords, as well as some words that occurr too often such as CCTV and so on
labeled.toks <- tokens_remove(labeled.toks,</pre>
                            c(stopwords("english", "smart"), "CCTV")) %>%
  tokens_wordstem()
# Let's have a look at the tokenized version of document 33
head(cctv.toks[[33]], 20)
   [1] "Peopl"
                                 "ball"
                                                          "futur"
                     "crystal"
                                              "foretel"
  [6] "convinc"
                     "project"
                                 "call"
                                              "Live"
                                                          "Earth"
```

[11] "Simul" "oper" "intern" "group" "scientist"
[16] "claim" "predict" "futur" "accur" "Live"

Notice how this process is always the same and in this case it is doing the exact same

Notice how this process is always the same, and in this case, it is doing the exact same thing we did with the unlabeled dataset. We can now proceed to create a DFM, in which we will remove the names of countries (just as we did before), and we will explore the top occurring features.

```
# Creates a DFM, with lowercased features (i.e. words)
labeled.dfm <- dfm(labeled.toks,</pre>
                 tolower = TRUE)
# How many documents are there in my DFM?
ndoc(labeled.dfm)
## [1] 1199
# How many features (i.e. words) are there in my DFM?
nfeat(labeled.dfm)
## [1] 11202
In this labeled dataset, we currently have almost as many words as we did in our 20,000+ articles of the
unlabeled dataset. We therefore might want to do the same process we did before of removing the names of
countries (they are occurring too often, and also removing words that do not appear too often).
# Removes mentions of a country
labeled.dfm <- dfm remove(labeled.dfm,</pre>
                              dictionary(data_dictionary_newsmap_en))
# We can print the top features and see how many there are in total
topfeatures(labeled.dfm, 10)
## countri
                                                 govern african
             africa
                        vear
                                peopl
                                         south
                                                                   presid
                                                                              time
##
                                                                               660
      1424
               1292
                        1094
                                           997
                                                    975
                                                             848
                                                                      827
                                 1027
##
     world
##
       642
nfeat(labeled.dfm)
## [1] 10949
# Trim the DFM to exclude words that occur less than 10 times and see total number of features
labeled.dfm <- dfm_trim(labeled.dfm, min_termfreq = 5)</pre>
nfeat(labeled.dfm)
## [1] 3621
topfeatures(labeled.dfm, 10)
##
  countri
             africa
                        year
                                peopl
                                         south
                                                 govern african
                                                                   presid
                                                                              time
##
      1424
               1292
                        1094
                                 1027
                                           997
                                                    975
                                                                      827
                                                                               660
                                                             848
##
     world
##
At this stage, we are ready to start the cross-validation of our model. We are going to run multiple iterations
of the NB classifier until we reach a point that we think is good enough.
The process is just like we saw at the beginning of the lab. 1. We sample a % of labeled articles and we use
them as training set. 2. We will then try to predict categories in the unseen dataset. 3. We will print the
confusion matrix and repeat until we find a model that is a good fit.
# Iteration 1
# Divide the labeled dataset into training and test
```

id_train1 <- sample(1:1199, 800, replace = FALSE) # Random sampling</pre>

Adding a variable named "id_numeric" to the DFM

```
docvars(labeled.dfm, "id_numeric") <- 1:ndoc(labeled.dfm)</pre>
# Split the labeled dataset into training and test
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in% id_train1)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train1)</pre>
# Fit the NB classifier
nb <- textmodel nb(training dfm, docvars(training dfm, "label"))</pre>
summary(nb, 50) # Prints probabilites of words per topic
##
## textmodel_nb.dfm(x = training_dfm, y = docvars(training_dfm,
##
       "label"))
##
## Class Priors:
##
   (showing first 3 elements)
             economy
                              politics sports & culture
              0.3333
##
                                0.3333
                                                  0.3333
##
## Estimated Feature Scores:
##
                                            leagu
                                                     special
                                   arab
                     0.002386 6.449e-05 0.0001290 0.0004514 3.225e-05
## economy
                     0.001638 1.342e-03 0.0006143 0.0005688 2.730e-04
## politics
## sports & culture 0.002733 1.171e-04 0.0021083 0.0008980 3.904e-05
##
                                    kofi
                         crisi
                                             annan
                                                        call
                                                                member
## economy
                     0.0010963 3.225e-05 3.225e-05 0.001322 0.0009351
## politics
                     0.0013651 1.138e-04 1.138e-04 0.002912 0.0015699
## sports & culture 0.0003123 3.904e-05 3.904e-05 0.001484 0.0008980
##
                                council overcom
                                                    prevail deadlock
                        secur
## economy
                     0.001290 0.0001935 1.290e-04 3.225e-05 9.674e-05
                     0.006143 0.0013879 4.550e-05 6.826e-05 9.101e-05
## politics
## sports & culture 0.001171 0.0001171 7.809e-05 1.562e-04 3.904e-05
##
                         adopt
                                                        enabl
                                    unit
                                             posit
## economy
                     0.0001935 0.0003547 0.0009996 2.257e-04 3.225e-05
                     0.0003640 0.0005005 0.0011149 4.550e-05 2.958e-04
## politics
## sports & culture 0.0001562 0.0003123 0.0013665 3.904e-05 3.904e-05
##
                        effort
                                   deliv
                                              peac
                                                      address
                     0.0008706 0.0004192 0.0005159 0.0004837 9.674e-05
## economy
## politics
                     0.0012741 0.0002730 0.0036631 0.0006826 4.550e-04
## sports & culture 0.0006247 0.0001952 0.0005076 0.0001171 2.733e-04
##
                        confer
                                   meet
                                             send
                                                   technic
## economy
                     0.0004192 0.001967 0.0002902 2.902e-04 0.0003869
## politics
                     0.0009556 0.002707 0.0008418 9.101e-05 0.0003868
## sports & culture 0.0005466 0.001054 0.0001562 4.685e-04 0.0081209
##
                                    talk
                                            resolv
                        prepar
                                                        stay
                     0.0002902 0.0019670 0.0001612 0.0006127 0.0009029
## economy
## politics
                     0.0006826 0.0037086 0.0007281 0.0007736 0.0013879
## sports & culture 0.0012103 0.0008589 0.0001562 0.0008980 0.0004685
                                    zone
                                           protect
                                                         grow
                           set
                     0.0015478 2.902e-04 0.0007094 0.0015478 0.001999
## economy
                     0.0008418 2.048e-04 0.0008191 0.0007281 0.001479
## politics
## sports & culture 0.0016398 3.904e-05 0.0006247 0.0008589 0.001796
                        refuge
                                    flee
                                           violent presid
                                                                bashar
```

```
## economy
                     0.0006772 0.0001290 9.674e-05 0.002031 3.225e-05
                     0.0008418 0.0002958 2.275e-04 0.010193 9.101e-05
## politics
## sports & culture 0.0001171 0.0001171 3.904e-05 0.001523 3.904e-05
                                              fled northern
                            al
                                   assad
                                                                  hour
## economy
                     9.674e-05 3.225e-05 9.674e-05 0.0001612 0.0007739
                     1.775e-03 4.550e-05 4.095e-04 0.0005461 0.0007736
## politics
## sports & culture 4.685e-04 3.904e-05 1.171e-04 0.0002343 0.0006247
```

The results above show us each word in our labeled dataset and the probability of this word belonging to one of 3 labels.

We would now be ready to try to predict the categories of the remaining 399 articles the algorithm hasn't seen. Before that, and as we learned earlier, we need to match the words appering in the training and test datasets because Naïve Bayes can only take features into consideration that occur both in the training set and the test set. We can fix this by passing training dfm to dfm match() as a pattern.

```
# Matches training and test sets
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))</pre>
# Predicting categories in the unseen group of documents
pred_data <- predict(nb, test_dfm)</pre>
# Building a confusion matrix to assess the accuracy, precision and recall metrics
actual_class <- docvars(test_dfm, "label")</pre>
predicted_class <- pred_data</pre>
class_table <- table(actual_class, predicted_class)</pre>
confusionMatrix(class_table, mode = "everything")
```

5

2

89

```
## Confusion Matrix and Statistics
##
##
                       predicted_class
## actual_class
                        economy politics sports & culture
                            126
##
     economy
                                       8
##
     politics
                              9
                                     138
##
     sports & culture
                             14
                                        8
##
## Overall Statistics
##
##
                  Accuracy: 0.8847
##
                    95% CI: (0.8492, 0.9143)
##
       No Information Rate: 0.386
       P-Value [Acc > NIR] : < 2e-16
##
##
##
                      Kappa: 0.825
##
    Mcnemar's Test P-Value: 0.04765
##
##
## Statistics by Class:
##
##
                         Class: economy Class: politics
## Sensitivity
                                 0.8456
                                                  0.8961
                                 0.9480
                                                  0.9551
## Specificity
## Pos Pred Value
                                 0.9065
                                                  0.9262
## Neg Pred Value
                                 0.9115
                                                  0.9360
## Precision
                                 0.9065
                                                  0.9262
## Recall
                                 0.8456
                                                  0.8961
```

```
## F1
                                 0.8750
                                                  0.9109
## Prevalence
                                                  0.3860
                                 0.3734
## Detection Rate
                                 0.3158
                                                  0.3459
## Detection Prevalence
                                 0.3484
                                                  0.3734
## Balanced Accuracy
                                 0.8968
                                                  0.9256
##
                         Class: sports & culture
## Sensitivity
                                            0.9271
## Specificity
                                            0.9274
## Pos Pred Value
                                            0.8018
## Neg Pred Value
                                            0.9757
## Precision
                                            0.8018
## Recall
                                            0.9271
## F1
                                            0.8599
## Prevalence
                                            0.2406
## Detection Rate
                                            0.2231
## Detection Prevalence
                                            0.2782
                                            0.9272
## Balanced Accuracy
```

Our NB classifier seems to have done pretty well, with measures well above .8. This is a good starting point, but we want to repeat the process a few times to find the best model for our data. So, we will iterate the process from randomly splitting our dataset into 2 groups (training and test), to fitting the model and testing the precision metrics.

We will do this 4 more times. The code chunks below, repeat the code above and just change the seed, so we get a different sample of articles each time.

```
# Iteration 2

id_train2 <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id_numeric") <- 1:ndoc(labeled.dfm)
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in% id_train2)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train2)
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))
summary(nb, 10)</pre>
```

```
##
## Call:
## textmodel_nb.dfm(x = training_dfm, y = docvars(training_dfm,
       "label"))
##
##
## Class Priors:
##
   (showing first 3 elements)
             economy
                               politics sports & culture
##
              0.3333
                                                   0.3333
                                 0.3333
##
## Estimated Feature Scores:
##
                                    arab
                                             leagu
                                                     special
                                                                  envoy
                     0.002427 0.0003782 0.0001576 0.0005358 3.152e-05
## economy
## politics
                     0.001577 0.0009461 0.0004731 0.0007884 2.253e-04
                     0.002720 0.0001183 0.0020892 0.0008278 3.942e-05
## sports & culture
##
                          crisi
                                     kofi
                                              annan
                                                         call
                                                                 member
## economy
                     0.0012293 3.152e-05 3.152e-05 0.001576 0.0008826
                     0.0012615 2.253e-05 2.253e-05 0.002703 0.0016220
## politics
## sports & culture 0.0002759 3.942e-05 3.942e-05 0.001222 0.0007490
```

```
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))</pre>
pred_data <- predict(nb, test_dfm)</pre>
actual_class <- docvars(test_dfm, "label")</pre>
predicted_class <- pred_data</pre>
class_table <- table(actual_class, predicted_class)</pre>
confusionMatrix(class_table, mode = "everything")
## Confusion Matrix and Statistics
##
##
                       predicted class
## actual_class
                        economy politics sports & culture
##
     economy
                            123
                                       7
                              6
##
     politics
                                      128
                                                           5
                                                          97
##
     sports & culture
                             19
                                        9
##
## Overall Statistics
##
##
                  Accuracy : 0.8722
##
                     95% CI: (0.8354, 0.9033)
##
       No Information Rate: 0.3709
       P-Value [Acc > NIR] : < 2e-16
##
##
##
                      Kappa: 0.8077
##
  Mcnemar's Test P-Value: 0.02457
##
##
## Statistics by Class:
##
##
                         Class: economy Class: politics
## Sensitivity
                                 0.8311
                                                 0.8889
## Specificity
                                 0.9522
                                                  0.9569
## Pos Pred Value
                                 0.9111
                                                  0.9209
## Neg Pred Value
                                 0.9053
                                                  0.9385
## Precision
                                 0.9111
                                                  0.9209
## Recall
                                 0.8311
                                                  0.8889
## F1
                                 0.8693
                                                  0.9046
## Prevalence
                                 0.3709
                                                  0.3609
## Detection Rate
                                 0.3083
                                                  0.3208
## Detection Prevalence
                                 0.3383
                                                  0.3484
## Balanced Accuracy
                                 0.8916
                                                  0.9229
##
                         Class: sports & culture
## Sensitivity
                                            0.9065
## Specificity
                                            0.9041
## Pos Pred Value
                                            0.7760
## Neg Pred Value
                                            0.9635
## Precision
                                            0.7760
## Recall
                                            0.9065
## F1
                                            0.8362
## Prevalence
                                            0.2682
## Detection Rate
                                            0.2431
## Detection Prevalence
                                            0.3133
## Balanced Accuracy
                                            0.9053
```

```
# Iteration 3
id train3 <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id_numeric") <- 1:ndoc(labeled.dfm)</pre>
training dfm <- dfm subset(labeled.dfm, id numeric %in% id train3)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train3)</pre>
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))</pre>
summary(nb, 10)
##
## Call:
## textmodel_nb.dfm(x = training_dfm, y = docvars(training_dfm,
       "label"))
##
## Class Priors:
## (showing first 3 elements)
                               politics sports & culture
             economy
##
              0.3333
                                 0.3333
                                                    0.3333
## Estimated Feature Scores:
##
                                                      special
                        start
                                    arab
                                              leagu
                     0.002178 0.0003933 0.0001815 0.0006051 3.025e-05
## economy
## politics
                     0.001799 0.0011915 0.0006565 0.0005836 2.918e-04
## sports & culture 0.002452 0.0001486 0.0018573 0.0006686 3.715e-05
                                     kofi
                                                         call
                                                                 member
                          crisi
                                               annan
                     0.0011799 3.025e-05 3.025e-05 0.001755 0.0009379
## economy
                     0.0014590 1.459e-04 1.459e-04 0.002796 0.0015319
## politics
## sports & culture 0.0002972 3.715e-05 3.715e-05 0.001337 0.0006686
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))</pre>
pred_data <- predict(nb, test_dfm)</pre>
actual_class <- docvars(test_dfm, "label")</pre>
predicted_class <- pred_data</pre>
class_table <- table(actual_class, predicted_class)</pre>
confusionMatrix(class_table, mode = "everything")
## Confusion Matrix and Statistics
##
##
                      predicted_class
## actual_class
                        economy politics sports & culture
##
     economy
                            121
                                       4
                                                          2
     politics
                             12
                                     154
##
                                       7
                                                         83
##
     sports & culture
                             15
##
## Overall Statistics
##
##
                  Accuracy : 0.8972
                    95% CI: (0.8632, 0.9252)
##
##
       No Information Rate: 0.4135
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                      Kappa: 0.8424
##
##
  Mcnemar's Test P-Value: 0.0003567
```

```
##
## Statistics by Class:
##
##
                         Class: economy Class: politics
## Sensitivity
                                 0.8176
                                                  0.9333
## Specificity
                                 0.9761
                                                  0.9444
## Pos Pred Value
                                 0.9528
                                                  0.9222
## Neg Pred Value
                                 0.9007
                                                  0.9526
## Precision
                                 0.9528
                                                  0.9222
## Recall
                                 0.8176
                                                  0.9333
## F1
                                 0.8800
                                                  0.9277
## Prevalence
                                 0.3709
                                                  0.4135
## Detection Rate
                                 0.3033
                                                  0.3860
## Detection Prevalence
                                 0.3183
                                                  0.4185
## Balanced Accuracy
                                 0.8968
                                                  0.9389
##
                         Class: sports & culture
## Sensitivity
                                            0.9651
## Specificity
                                            0.9297
## Pos Pred Value
                                            0.7905
## Neg Pred Value
                                            0.9898
## Precision
                                            0.7905
## Recall
                                            0.9651
## F1
                                            0.8691
## Prevalence
                                            0.2155
## Detection Rate
                                            0.2080
## Detection Prevalence
                                            0.2632
## Balanced Accuracy
                                            0.9474
# Iteration 4
id_train4 <- sample(1:1199, 800, replace = FALSE)</pre>
docvars(labeled.dfm, "id_numeric") <- 1:ndoc(labeled.dfm)</pre>
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in% id_train4)</pre>
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train4)</pre>
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))</pre>
summary(nb, 10)
##
## Call:
## textmodel nb.dfm(x = training dfm, y = docvars(training dfm,
##
       "label"))
##
## Class Priors:
## (showing first 3 elements)
##
             economy
                               politics sports & culture
##
              0.3333
                                 0.3333
                                                    0.3333
##
## Estimated Feature Scores:
##
                                                      special
                         start
                                    arab
                                              leagu
                      0.002486 0.0003894 8.986e-05 0.0005391 2.995e-05
## economy
## politics
                      0.001552 0.0007032 2.425e-04 0.0007759 3.152e-04
## sports & culture 0.002171 0.0001229 2.335e-03 0.0007784 4.097e-05
##
                          crisi
                                     kofi
                                               annan
                                                         call
## economy
                      0.0009285 2.995e-05 2.995e-05 0.001498 0.0010483
                      0.0010912 1.212e-04 1.212e-04 0.002740 0.0015761
## politics
```

```
## sports & culture 0.0004097 4.097e-05 4.097e-05 0.001352 0.0006555
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))</pre>
pred_data <- predict(nb, test_dfm)</pre>
actual_class <- docvars(test_dfm, "label")</pre>
predicted_class <- pred_data</pre>
class_table <- table(actual_class, predicted_class)</pre>
confusionMatrix(class_table, mode = "everything")
## Confusion Matrix and Statistics
##
##
                      predicted_class
## actual_class
                        economy politics sports & culture
                            109
##
     economy
                                       4
                                      158
##
     politics
                              6
                                                          1
##
                             21
                                      12
                                                         83
     sports & culture
##
## Overall Statistics
##
##
                  Accuracy : 0.8772
##
                    95% CI: (0.8409, 0.9077)
##
       No Information Rate: 0.4361
##
       P-Value [Acc > NIR] : < 2e-16
##
##
                      Kappa : 0.8122
##
## Mcnemar's Test P-Value : 0.00021
##
## Statistics by Class:
##
##
                         Class: economy Class: politics
## Sensitivity
                                 0.8015
                                                  0.9080
## Specificity
                                 0.9658
                                                  0.9689
## Pos Pred Value
                                 0.9237
                                                  0.9576
## Neg Pred Value
                                 0.9039
                                                  0.9316
## Precision
                                 0.9237
                                                  0.9576
## Recall
                                 0.8015
                                                  0.9080
## F1
                                 0.8583
                                                  0.9322
## Prevalence
                                 0.3409
                                                  0.4361
## Detection Rate
                                 0.2732
                                                  0.3960
## Detection Prevalence
                                 0.2957
                                                  0.4135
## Balanced Accuracy
                                 0.8836
                                                  0.9385
##
                         Class: sports & culture
## Sensitivity
                                            0.9326
## Specificity
                                            0.8935
## Pos Pred Value
                                            0.7155
## Neg Pred Value
                                            0.9788
## Precision
                                            0.7155
## Recall
                                            0.9326
## F1
                                            0.8098
## Prevalence
                                            0.2231
## Detection Rate
                                           0.2080
## Detection Prevalence
                                            0.2907
## Balanced Accuracy
                                            0.9131
```

```
# Iteration 5
id train5 <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id_numeric") <- 1:ndoc(labeled.dfm)</pre>
training dfm <- dfm subset(labeled.dfm, id numeric %in% id train5)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train5)</pre>
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))</pre>
summary(nb, 10)
##
## Call:
## textmodel_nb.dfm(x = training_dfm, y = docvars(training_dfm,
       "label"))
##
## Class Priors:
## (showing first 3 elements)
                               politics sports & culture
             economy
              0.3333
##
                                 0.3333
                                                    0.3333
## Estimated Feature Scores:
##
                        start
                                    arab
                                              leagu
                                                      special
                      0.002566 0.0002782 0.0001236 0.0004327 3.091e-05
## economy
## politics
                      0.001730 0.0010232 0.0005847 0.0007553 3.167e-04
## sports & culture 0.002489 0.0001509 0.0027534 0.0007921 3.772e-05
                                     kofi
                          crisi
                                               annan
                                                         call
                                                                  member
                      0.0012982 3.091e-05 3.091e-05 0.001700 0.0008964
## economy
                      0.0010476 1.218e-04 1.218e-04 0.002509 0.0015349
## politics
## sports & culture 0.0003395 3.772e-05 3.772e-05 0.001546 0.0008675
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))</pre>
pred_data <- predict(nb, test_dfm)</pre>
actual_class <- docvars(test_dfm, "label")</pre>
predicted_class <- pred_data</pre>
class_table <- table(actual_class, predicted_class)</pre>
confusionMatrix(class_table, mode = "everything")
## Confusion Matrix and Statistics
##
##
                      predicted_class
## actual_class
                        economy politics sports & culture
##
     economy
                            115
                                       2
                                                         10
     politics
                              7
                                     159
                                                          2
##
                                                         84
##
     sports & culture
                             10
                                      10
##
## Overall Statistics
##
##
                  Accuracy : 0.8972
                    95% CI: (0.8632, 0.9252)
##
##
       No Information Rate: 0.4286
       P-Value [Acc > NIR] : < 2e-16
##
##
##
                      Kappa: 0.8423
##
##
   Mcnemar's Test P-Value: 0.04377
```

```
##
## Statistics by Class:
##
##
                         Class: economy Class: politics
## Sensitivity
                                 0.8712
                                                  0.9298
                                 0.9551
                                                  0.9605
## Specificity
## Pos Pred Value
                                 0.9055
                                                  0.9464
## Neg Pred Value
                                 0.9375
                                                  0.9481
## Precision
                                 0.9055
                                                  0.9464
## Recall
                                 0.8712
                                                  0.9298
## F1
                                 0.8880
                                                  0.9381
## Prevalence
                                 0.3308
                                                  0.4286
## Detection Rate
                                 0.2882
                                                  0.3985
## Detection Prevalence
                                                  0.4211
                                 0.3183
## Balanced Accuracy
                                 0.9131
                                                  0.9452
##
                         Class: sports & culture
## Sensitivity
                                            0.8750
## Specificity
                                            0.9340
## Pos Pred Value
                                            0.8077
## Neg Pred Value
                                            0.9593
## Precision
                                            0.8077
## Recall
                                            0.8750
## F1
                                            0.8400
## Prevalence
                                            0.2406
## Detection Rate
                                            0.2105
## Detection Prevalence
                                            0.2607
## Balanced Accuracy
                                            0.9045
```

From the results above, it seems that model 2 is our best fit, so that's the one we are going to use to predict the topics in our larger dataset of 2012 articles. Therefore, we need to get the model fitted again. Fortuntely, because we used set.seed() we can reproduce the findings.

```
# Reproduce the findings of Iteration 2, to predict labels of the full dataset
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in% id_train2)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_train2)
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))</pre>
```

I do not need to re-run all the metrics again, because all I am interested in is the "nb" object which has all the probabilites that I need to feed into the predict function below.

So, we are ready to go back to the dataframe that we created at the very beginning with all the 20,000+ articles that we haven't labeled, but want to see labeled. We are going to use the probabilities in nb to get labels.

```
# We match the features in the NB fitted model and in our dataset of interest
dfmat_matched <- dfm_match(cctv.dfm, features = featnames(training_dfm))

# We fit the model
tmod <- predict(nb, dfmat_matched)

tmod.labels <- as.data.frame(tmod)
colnames(tmod.labels) <- "labels"

head(tmod.labels, 10)</pre>
```

```
## labels
## text1 politics
```

```
## text2
                    economy
## text3
                    economy
                   politics
## text4
## text5 sports & culture
## text6 sports & culture
## text7
                    economy
## text8
                    economy
## text9
                    economy
## text10
                    economy
table(tmod.labels$labels)/length(tmod) # Proportion of topics in our target df
##
##
                              politics sports & culture
             economy
           0.4390263
                             0.2014683
                                               0.3595054
##
```

The results we find here would need to be validated by hand coding a sample of these articles and making sure that the labels actually match the content of the article.