IPSA NUS - Day 4

Topic Classification - Naive Bayes Classifier

Dani Madrid-Morales (with code from content-analysis-with-r.com)

In today’s class we will learn the process of using a pre-labeled dataset to train a Naives Bayes Classifier. We
will have a “simple” example, and then we’ll work through a much more complex one that reproduces all the
stages, decisions and nuances of doing machine learning.

The process of building a classifier works like this:

1. You will need to have some documents that are already classified. That is, documents with labels.
2. You will split those documents in 2 groups training set and testing set.

3. You will apply the nb classifier on the first group, and test it on the second group.

4. You will repeat the process as many times as needed until you are good to go.

Part 1 - Basic Naive Bayes Classifier

We will need some new packages to run today’s code, so let’s get them all at once. You might need to
uncomment the first few lines if you don’t have those packages on your own computer. Make sure you have
devtools in your computer before you proceed. Check the results carefully, as missing one single package will
affect the overall performance of the code.

Let’s start with a classifier of comments posted on reddit, a social media platform where users can post
pretty much anything on almost any topic using subreddits. We are going to use data from two very
subreddits, one about the Civil War in Syria, and one about Science. The data, which is available from
https://content-analysis-with-r.com/, is saved in a file called reddit.RData

# The file contains a quanteda corpus, and the full dataset
load("reddit.RData")
glimpse(reddit.stats)

## Rows: 20,603
## Columns: 20

## $ Text <fct> sciencel, science2, science3, science4, scien...
## $ Types <int> 41, 23, 15, 33, 53, 3, 7, 66, 42, 38, 22, 5, ..
## $ Tokens <int> 53, 30, 16, 44, 75, 3, 10, 84, 52, 57, 26, 5,...
## $ Sentences <int> 7, 3, 2, 4, 6, 1, 3, 4, 2, 3, 2, 1, 1, 1, 6, ...
## $ structure <chr> "1", "1 1", "1 ¢4 1", "1 2" "1 2 1", "1 2 1 1...
## $ post_date <date> 2009-12-01, 2009-12-01, 2009-12-01, 2009-12-...
## $ comm_date <date> 2009-12-01, 2009-12-02, 2009-12-02, 2009-12-...
## $ num_comments <dbl> 3646, 3646, 3646, 3646, 3646, 3646, 3646, 364...
## $ subreddit <chr> "science", "science", "science", "science", "...
## $ upvote_prop <dbl> 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.8...
## $ post_score <dbl> 857, 857, 857, 857, 857, 857, 857, 857, 857,

## $ author <chr> "peteyH", "peteyH", "peteyH", "peteyH", "pete...
## $ user <chr> "[deleted]", "ionstorm66", "ac3raven", "syste...
## $ comment_score <dbl> 407, 192, 11, 51, 37, 9, 11, 6, 4, 3, 187, 98...
## $ controversiality <dbl> 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O,

## $ title <chr> "What is the single scientific discovery you ...
## $ post_text <chr> "Please identify one and elaborate if you hav...
## $ link <chr> "https://www.reddit.com/r/science/comments/a9. ..
## $ domain <chr> "self.science", "self.science", "self.science...
## $ URL <chr> "http://www.reddit.com/r/science/comments/adz. ..


https://content-analysis-with-r.com/

reddit.corpus <- corpus(reddit.stats, text_field = "post_text")
reddit.corpus
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head(docvars(reddit.corpus), 5)
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Text Types Tokens Sentences structure post_date comm_date

sciencel 41 53 7 1 2009-12-01 2009-12-01
science2 23 30 3 1_1 2009-12-01 2009-12-02
scienced 15 16 2 1_1_1 2009-12-01 2009-12-02
science4 33 44 4 1_2 2009-12-01 2009-12-01
scienceb 53 75 6 1_2_1 2009-12-01 2009-12-01
num_comments subreddit upvote_prop post_score author user
3646  science 0.89 857 peteyH [deleted]
3646 science 0.89 857 peteyH ionstorm66
3646 science 0.89 857 peteyH ac3raven
3646  science 0.89 857 peteyH systemghost
3646  science 0.89 857 peteyH  [deleted]
comment_score controversiality
407 0
192 0
11 0
51 0
37 0
title
What is the single scientific discovery you most want to see in your lifetime?
What is the single scientific discovery you most want to see in your lifetime?
What is the single scientific discovery you most want to see in your lifetime?
What is the single scientific discovery you most want to see in your lifetime?
What is the single scientific discovery you most want to see in your lifetime?
link
https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/



## 4 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/
## 5 https://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/

## domain

## 1 self.science

## 2 self.science

## 3 self.science

## 4 self.science

## 5 self.science

##

## 1 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/7r
## 2 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?7r
## 3 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?r
## 4 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?r
## 5 http://www.reddit.com/r/science/comments/a9zdb/what_is_the_single_scientific_discovery_you_most/?r

From the output above, we know that this corpus has over 20,000 documents. In the docvars, there’s a
column called subreddit that classifies the posts into either sicence or syriancivilwar. We are going to
use this labels to train a model that would classify unseen comments on reddit into one of the two categories.
Because this is a pretty large corpus, and it would take us a long time to train a model, we will work with a
smaller subsample of 2,000 comments. The corpus_sample function in quanteda allows to do so.

# Random sample of 2,000 items in the Reddit corpus
set.seed(80) # Setting a seed guarantees next time I will get the same rTandom sample
sample.reddit.corpus <- corpus_sample(reddit.corpus, size = 2000)

In this example we will split our labeled dataset into 1,500 comments as the training set that we will use
to build a Naive Bayes classifier. In a second step, we will try to succesfully predict the sentiment for the
remaining reviews (our test set).

# We generate 1500 numbers without replacement

id_train <- sample(1:2000, 1500, replace = FALSE) # Sample the rTange 1 to 2000, select 1500, do mot rep

head(id_train, 10) # Show us the first 10 numbers you extracted

## [1] 1694 1810 37 1300 927 1675 440 1992 1210 1621

The numbers above are the top 10 randomly extracted numbers. We are going to use these numbers to select
documents in the corpus.

Next, we are going to create a new document variable (docvar) in my corpus. This variable (“id numeric”)
is just a number that I can then compare to the numbers I randomly sampled. This way I could make the
selection of cases that will be in my training dataset, and the cases that will be in my test dataset.

The outcome here should be two DFMs (remember, a DFM is a matrix with Documents and Features), one
with the training set and one with the test set.

# Create docvar with ID (= number from 1 to 2000)
docvars (sample.reddit.corpus, "id_numeric") <- l:ndoc(sample.reddit.corpus)

# Get training set by subsetting the corpus using randomly sampled numbers as criterion
dfmat_training <- corpus_subset(sample.reddit.corpus, id_numeric %in% id_train) %>%

tokens (remove_symbols = TRUE, remove_punct = TRUE, remove_numbers = TRUE, remove_url = TRUE) >%

dfm(stem = TRUE) %>%
dfm_remove (stopwords("english"))

# Get test set (documents mnot im id_train)

dfmat_test <- corpus_subset(sample.reddit.corpus, !id_numeric %inJ id_train) %>%
tokens (remove_symbols = TRUE, remove_punct = TRUE, remove_numbers = TRUE, remove_url
dfm(stem = TRUE) %>%

TRUE) %>%



dfm_remove (stopwords("english"))

Next we are ready to train the Naive Bayes classifier using the function textmodel_nb(). This function takes
two arguments: 1. The DFM of the training set 2. The variable (corpus metadata, or docvar in quanteda)
that has the labels.

When we run this, the algorithm will compute the probability of word n being in category c. And, if we print
the summary of the model, we will get a matrix, with words and categories.

tmod_nb <- textmodel_nb(dfmat_training, docvars(dfmat_training, "subreddit"))
summary (tmod_nb)

##

## Call:

## textmodel _nb.dfm(x = dfmat_training, y = docvars(dfmat_training,
#it "subreddit"))

##

## Class Priors:

## (showing first 2 elements)

H# science syriancivilwar

#i# 0.5 0.5

#i#

## Estimated Feature Scores:

#it accord lot sourc morn offens launch
## science 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838
## syriancivilwar 0.0034671 0.0016836 0.0049507 0.0006001 0.0052674 0.0024670
## saa n-hama captur territori held rebel
## science 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838
## syriancivilwar 0.0053841 0.0006001 0.0038672 0.0006001 0.0011835 0.0115682
## 1i1tl bit free time moment  thought
## science 0.0001838 0.0001838 0.0001838 0.001471 0.0001838 0.0001838
## syriancivilwar 0.0006001 0.0011001 0.0047173 0.003634 0.0015669 0.0006001
## make megathread map peto lucem

## science 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838

## syriancivilwar 0.0022670 0.0019836 0.0067842 0.0011835 0.0011835

## area hour ago pro-regim claim latmin
## science 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838 0.0001838
## syriancivilwar 0.0030504 0.0010668 0.0006001 0.0017669 0.0036338 0.0023503
## regim

## science 0.0001838

## syriancivilwar 0.0056174

Let’s explore these results in a bit more detail. We are told that we ran a NB Classifier, assuming class priors
of .5 and .5 (you could adjust that if needed with an additional argument in textmodel_nb). Then we get
some words and, for each word, the probability assigned to it by the algorithm. These probabilites are the
likelihood of a word appearing in documents of a certain label.

Naive Bayes can only take features into consideration that occur both in the training set and the test set, but
we can make the features identical by passing training_dfm to dfm_match() as a pattern.

dfmat_matched <- dfm_match(dfmat_test, features = featnames(dfmat_training))

We are now ready to use these probabilities to try to predict the label of the remaining documents in the
dataset. So, remember, we divided our 2,000 labeled comments into a training and test dataset. Now we are
going to ask quanteda to predict the categories of the test dataset (n = 500) and then we will compare these
predictions to the actual labels that we have.



To apply an NB to an unseen dataset, we use the function predict. This takes two arguments:
1. Argument 1 is the result of the probabilites that we computed earlier (that is, our model). 2. A new
dataset unseen by the algorithm that we want to classify.

# Create a simple dataframe with the TRUE labels of the test set that we can use later
actual_class <- docvars(dfmat_matched, "subreddit')

# Predict the categories using the NB model we trained
predicted_class <- predict(tmod_nb, newdata = dfmat_matched)

Let’s inspect how well the classification worked. For this, we are creating a table with the actual labels we
stored before, the results of the predict function.

tab_class <- table(actual_class, predicted_class)
tab_class

## predicted_class

## actual_class science syriancivilwar
##  science 267 0
##  syriancivilwar 85 148

In the confusion matrix above, we see that the algorithm did relatively well. We can use the function
confusionMatrix() from the caret package to assess the performance of the classification.

confusionMatrix(tab_class, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class science syriancivilwar
## science 267 0
##  syriancivilwar 85 148
##

#i# Accuracy : 0.83

## 95% CI : (0.7941, 0.8619)
## No Information Rate : 0.704

## P-Value [Acc > NIR] : 5.714e-11

##

## Kappa : 0.6503

##

## Mcnemar's Test P-Value : < 2.2e-16

##

## Sensitivity : 0.7585

## Specificity : 1.0000

## Pos Pred Value : 1.0000

## Neg Pred Value : 0.6352

## Precision : 1.0000

## Recall : 0.7585

#i# F1 : 0.8627

## Prevalence : 0.7040

## Detection Rate : 0.5340

## Detection Prevalence : 0.5340

## Balanced Accuracy : 0.8793

##

#i 'Positive' Class : science

##



The model seems to be relatively robust with measures of precision around .8. In a real research context, we
would repeat this operation multiple times, we different folds of the training set and test set, until we reached
an even higher level of accuracy, precision and recall. We would then use this one trained model to a larger
unseen dataset.

Part 2 - Fitting a NB in the “real” world

Your job as a computational social scientist is unlikely to be this easy most of the time. Usually you will be
faced with lots of choices and difficulties in getting all your data ready.

The next example is a lot more complex and requires more input on the side of the researcher to achieve a
good score in the precision metrics.

There are a lot of required files for this exercise, so if you are going to run this on your own computer, make
sure you have downloaded all of them, and that they are saved in the correct location. Otherwise you are
likely to encounter errors as you go through the code.

The starting point here is to load the unlabeled set of documents. The file “cctvnewscontent_ lab4.csv”
includes the transcript of over 13,000 news stories broadcast on China’s State Broadcaster CCTV’s global
branch, now called CGTN. We are going to try to classify these stories using an NB model trained using a
smaller sample of pre-labeled data.

To get started, we read the document (a .csv file) using the fread function from the data.table package,
which we have used before.

cctv.unlabeled <- fread("cctvnewscontent_lab4.csv")

The dataset contains over 230 variables that we do not need to explore right now. I'll bring your attention to
the variable wec which has a wordcount for each transcript. Because really short texts (less than 50 words)
are going to be very difficult to classify, we will remove those first.

After we subset the dataset, we are ready to call the corpus function in quantedaand pass the column name
where the texts are stored as the source for the corpus.

# Uses base R to subset a dataframe, by year and wordcount (that is wc).
cctv_news <- subset(cctv.unlabeled, wc>50)
rm(cctv.unlabeled)

# Creates a simple quanteda corpus
cctv.corpus <- corpus(cctv_news$text)

We also want to create some metadata that might be useful for us at a later stage to do some analysis. In
this next chunk of code, we are splitting up the dates into months, years, weeks and days. This can be done
with the lubridate package.

The functions year, month and so on, take a full date (2019-12-03 0 2019/12/03 or 1-Dec-19, or pretty much
any known format), and then extract the element that we are interested in.

We are then, adding this new variable as metadata of our newly created corpus.

#In the cctv.corpus, I add a new docvar called "date" which has the published date
docvars(cctv.corpus, "date") <- cctv_news$date.publish

#In the cctv.corpus, I add a new docvar called "year" which has the year extracted from the date
docvars(cctv.corpus, "year") <- year(docvars(cctv.corpus, 'date'))

# And so on.

docvars(cctv.corpus, "month") <- month(docvars(cctv.corpus, 'date'))
docvars(cctv.corpus, "week") <- week(docvars(cctv.corpus, 'date'))
docvars(cctv.corpus, "day") <- day(docvars(cctv.corpus, 'date'))



# We also add title as metadata in the corpus
docvars(cctv.corpus, "title") <- cctv_news$title

# And the locations cited in each mews iem.
docvars(cctv.corpus, "locations") <- cctv_news$locations

We are now ready to tokenize our corpus. Remember, tokenizing separates each document into tokens (that is,
words). We are also going to take this opportunity to clean the tokenized version of the corpus, by removing
things like stopwords, punctuation and so on. To make the analysis easier for us, we are just

This might take a few seconds to run.

# We first tokenize our corpus and Temove spaces, numbers and punctuation
cctv.toks <- tokens(cctv.corpus,

remove_separators = TRUE,

remove_numbers = TRUE,

remove_punct = TRUE)

# We remove stopwords, as well as some words that occurr too often such as CCTV and so on
cctv.toks <- tokens_remove(cctv.toks,
c(stopwords("english", "smart"),"CCTV")) %>%
tokens_wordstem()

Let’s have a look at one of the documents that has been tokenized, for example document 3433. We are going
to print the first 25 words in this tokenized document.

head(cctv.toks[[3433]], 25)

## [1] "Qinghai" "Internat" "Carpet" "Exhibit" "open"
## [6] "Xine" "capit" "citi" "northwest"  "China"
## [11] "Qinghai" "Provinc" "Monday" "businessmen" "home"
## [16] "abroad" "attend" "annual" "event" "exhibit"
## [21] "area" "booth" "Tibetan" "carpet" "display"

As we know, the process of working with quanteda is that we first create a corpus, then we tokenize that
corpus and then we create a DFM (document feature matrix) that can be used for most analyses. So, let’s do
that.

We are also going to lowercase our DFM, as we know this is an important step to reduce the dimensions of
our DFM.

# Creates a DFM, with lowercased features (i.e. words)
cctv.dfm <- dfm(cctv.toks,
tolower = TRUE)

# How many documents are there in my DFM?
ndoc(cctv.dfm)

## [1] 12940

# How many features (i.e. words) are there in my DFM?
nfeat (cctv.dfm)

## [1] 49120

So, there are 12,940 documents and more than 49.000 words. This is too large of a number, so we are going
to trim this DFM to make more manageable. According to Zipf’s law,words that do not occur too often
aren’t really “important” for QTA, so we can remove words that occur less than a certain number of times
and that appear in less than a certain number of documents.



These values are somewhat arbitrary. We could see which are the top occurring words to get an idea of
general frequencies, and use that to determine how much we are going to trim our DFM

topfeatures(cctv.dfm, 10)

##  china year chines  peopl countri provinc citi time water
## 23846 13646 11988 10750 7941 7434 7165 6593 6528
##  local
#i# 6522

From this, we also see that China seems to be occuring very often. To correct for this, we could remove all
mentions of countries from our DFM. Luckily for us, quanteda has a dictionary of countries in the package
newsmap that we can pass to quanteda to remove the words.

# Removes mentions of a country
cctv.dfm <- dfm_remove(cctv.dfm,
dictionary(data_dictionary_newsmap_en))

# We can print the top features and see we let go of China and Chinese
topfeatures(cctv.dfm, 10)

## year chines  peopl countri provinc citi time water local
## 13646 11988 10750 7941 7434 7165 6593 6528 6522
## govern
#i# 6233

# Trim the DFM to exclude words that occur less than 10 times
cctv.dfm <- dfm_trim(cctv.dfm, min_termfreq = 10)

# How many features (i.e. words) are there in my DFM after trimming?
nfeat(cctv.dfm)

## [1] 9274

We have gone from more than 49.000 featuresm to 9,274, which is enough to get diversity and specificity in
our DFM.

Now that we finished getting our corpus of interest ready we need to train an algorithm that we can then
apply to this corpus to see what topic each of the documents belongs to.

For this process, I need to create a dataframe that has 2 things:
1. The text of the documents that are labeled
2. The labels of these documents

To get to this point, we are going to collect some Word files that have the text, and combine them with an
Excel file that has the labels.

Let’s start with importing the Word files to R. To do this, I am going to make a list of all the files, then I am
going to write a loop that load the file to R, reads it, extracts the text and pastes it into a single dataframe

# Create a list of file names
list.transcripts.paths <- list.files(path="Texts/")

# Creates an empty object where I am going to store my text files
full.transcripts2012 <- c()

# A for loop that goes through the list of files in and extracts the text

for(i in list.transcripts.paths){ # Go through the list of file names
file <- paste("Texts/",i,collapse="", sep = "") # Create a path where the file is stored
transcript <- read_docx(file) # Read the file to R



transcript <- paste(transcript, collapse = " ") # Collapse or concatenate all the texzt into 1 long st
full.transcripts2012 <- paste(transcript, full.transcripts2012, collapse = " ") # Add it to my empty
b

The object 1list.transcripts.paths is just a list of file names. The object full.transcripts is now a
VERY long character with ALL the text from the 56 Word files. This is of no use to us, so we are going to
split this LONG character into 1199 shorter texts, each of which has the text of 1 news story.

Luckily for us, the beginning and end of each document is clearly marked with the words “ID —” or “ID -".
Therefore, next we are going to have R look for these instances of either phrase and add a marker (“|”) that
we are then going to use to split the character object into smaller chunks one for each news story.

# We look for instances of ID -- or ID - and use the marker | to substitute them
full.transcripts2012 <- str_replace_all(full.transcripts2012, fixed("ID -- "), "[")
full.transcripts2012 <- str_replace_all(full.transcripts2012, fixed("ID - "), "[")

# We tell R, split the long character "full.transcripts2012" into shorter strings using "/" to make the
a <- strsplit(full.transcripts2012, "[|]") # Creates a list

# We unlist "a" into a DF of one single column including each news titem in one Tow

df <- data.frame(matrix(unlist(a), nrow=lengths(a), byrow=T))

colnames(df) <- "text" # Name this new column "text"

df$text <- str_replace_all(df$text, fixed("|"), "") # Remove the marker "[" from the text

# Each document has an ID number, and we are going extract it form the text
df$id <- substr(df$text,1,4) # Extract the first 4 characters of the text (which is where the ID 4s)
df$text <- substring(df$text,5) # Use the rest of content as the text

# Let's clean our R Environment and remove objects we mo longer need
rm(a)

rm(full.transcripts2012)

rm(list.transcripts.paths)

rm(i)

# Let's have a look at what this new df looks like

head (df)
##

##H 1

## 2 Peninah: Hello and welcome to Africa Live. I’m Peninah Karibe. Let’s take you live to South Afric
## 3

## 4

## 5

## 6

## id
## 1

## 2 1177
## 3 1178
## 4 1179
## 5 1180
## 6 1181

So we’ve created a df that has text and ID. Now we are missing the labels for each of these texts. These
labels are stored in another Excel file that we are now going to merge to the one that includes the texts



# Read the CSV file with the labels
cgtn.dataset <- read.csv(file = "CCTVFullDatasetFromR.csv", colClasses=c("id"="character"))

# Remove the first column, which we don't need
cgtn.dataset$X <- NULL

# Merge the 2 datasets using "td" as the key to merge them
full.text.cgtn <- merge(cgtn.dataset[,c(1:106,407:414)], d4f[2:1200,], "id")

# Let's just keep the wariables we are interested in
full.text.cgtn %<>%
select(id,
year,
topic_name,
text)

# Let's have a look at what the new full.text.cgtin df looks like
glimpse(full.text.cgtn)

## Rows: 1,199
## Columns: 4

## $ id <chr> "0001", "0002", "0003", "0004", "00OO05", "0006", "0O...
## § year <int> 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 201...
## $ topic_name <fct> "Military & Political Violence", "Crime, Legal & Ju...
## $ text <chr> " We start in Syria where UN Arab League special en...

# Finally, let's clean our Environment of unnecessary wvariables
rm(cgtn.dataset)

rm(df)

rm(file)

rm(transcript)

So, our training dataset has 4 variables, one with the text ID, one with the year, one with the topic label
assigned by human coders, and one with the text. Let’s see which topics are included in this hand coded
dataset

table(full.text.cgtn$topic_name)

##

## Crime, Legal & Judicial Matters Culture, Religion & Tourism
## 36 41
## Ecology & the Environment Economic Matters
#i# 28 273
#i# Foreign Affairs/Diplomacy Human Interest & Oddities
## 132 20
##  Military & Political Violence Natural Disasters & Accidents
## 163 22
## Politics within a State Science & Technology
#i# 186 15
## Social Issues Sports
## 98 185

From the table above, we see that there’s some topics that do not occur very often, while other occur quite
often. So, we might want to reduce the dimensions of our labels, to have just 3 groups:

1. Political news (include diplomacy, domestic politcs, and military and political violence, crime legal and
judicial matters)

10



2. News about the economy (including economic matters, social issues and science and technology)
3. News about other topics

For this, we will need to recode our labels into a new variable, which we will code “label” that will take only
3 levels: politics, economy and others. To do this, we are going to use the case_when function, that allows us
to give conditions to the recoding of a variable.

full.text.cgtn %<>Y
mutate(label = case_when(

topic_name == "Politics within a State" ~ "politics",
topic_name == "Military & Political Violence" ~ "politics",
topic_name == "Foreign Affairs/Diplomacy" ~ "politics",
topic_name == "Economic Matters"~ "economy",

topic_name == "Science & Technology" ~ "economy",
topic_name == "Social Issues" ~ "economy",

TRUE ~ "sports & culture "))

table(full.text.cgtn$label)

##
## economy politics sports & culture
## 386 481 332

We now have three more or less balance categories, that we can use as labels to train our Naive Bayes
algorithm. Before we can do that, we need to turn this df with the texts and labels, into a corpus that
quanteda is able to read for the NB classifier.

labeled.corpus <- corpus(full.text.cgtn)

# Let's add the labels we just created as docvars
docvars(labeled.corpus, "label") <- full.text.cgtn$label

As usual, let’s tokenize the labeled dataset and do some cleaning by rmeoving punctuation, numbers, symbols
and stop words, as well as the word CCTV which appears very often.

# We use "tokens" to tokenize the corpus

labeled.toks <- tokens(labeled.corpus,
remove_separators = TRUE,
remove_numbers = TRUE,
remove_punct = TRUE)

# We remove stopwords, as well as some words that occurr too often such as CCTV and so on
labeled.toks <- tokens_remove(labeled.toks,
c(stopwords("english", "smart"),"CCTV")) %>%
tokens_wordstem()

# Let's have a look at the tokenized version of document 33
head(cctv.toks[[33]], 20)

## [1] "Peopl" "crystal" "ball" "foretel" "futur"

## [6] "convinc" "project" "call" "Live" "Earth"

## [11] "Simul" "oper" "intern" "group" "scientist"
## [16] "claim" "predict"  "futur" "accur" "Live"

Notice how this process is always the same, and in this case, it is doing the exact same thing we did with the
unlabeled dataset. We can now proceed to create a DFM, in which we will remove the names of countries
(just as we did before), and we will explore the top occurring features.
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# Creates a DFM, with lowercased features (i.e. words)
labeled.dfm <- dfm(labeled.toks,
tolower = TRUE)

# How many documents are there in my DFM?
ndoc(labeled.dfm)

## [1]1 1199

# How many features (i.e. words) are there in my DFM?
nfeat(labeled.dfm)

## [1] 11202

In this labeled dataset, we currently have almost as many words as we did in our 20,000+ articles of the
unlabeled dataset. We therefore might want to do the same process we did before of removing the names of
countries (they are occurring too often, and also removing words that do not appear too often).

# Removes mentions of a country
labeled.dfm <- dfm_remove(labeled.dfm,
dictionary(data_dictionary_newsmap_en))

# We can print the top features and see how many there are in total
topfeatures(labeled.dfm, 10)

## countri africa year  peopl south govern african presid time
#i# 1424 1292 1094 1027 997 975 848 827 660
##  world
## 642

nfeat (labeled.dfm)

## [1] 10949

# Trim the DFM to exzclude words that occur less than 10 times and see total number of features
labeled.dfm <- dfm_trim(labeled.dfm, min_termfreq = 5)

nfeat (labeled.dfm)

## [1] 3621

topfeatures(labeled.dfm, 10)

## countri africa year  peopl south govern african presid time
#i# 1424 1292 1094 1027 997 975 848 827 660
##  world
#it 642

At this stage, we are ready to start the cross-validation of our model. We are going to run multiple iterations
of the NB classifier until we reach a point that we think is good enough.

The process is just like we saw at the beginning of the lab. 1. We sample a % of labeled articles and we use
them as training set. 2. We will then try to predict categories in the unseen dataset. 3. We will print the
confusion matrix and repeat until we find a model that is a good fit.

# Iteration 1

# Divide the labeled dataset into training and test
id_trainl <- sample(1:1199, 800, replace = FALSE) # Random sampling

# Adding a variable named "id_numeric" to the DFM
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docvars(labeled.dfm, "id _numeric") <- 1:ndoc(labeled.dfm)

# Split the labeled dataset into training and test
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in’% id_trainl)
test_dfm <- dfm_subset(labeled.dfm, !id_numeric %in% id_trai

# Fit the NB classifier
nb <- textmodel_nb(training dfm, docvars(training dfm, "label"))
summary(nb, 50) # Prints probabilites of words per topic

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

nl)

textmodel_nb.dfm(x = training_dfm, y = docvars(training_dfm,
"label"))

Class Priors:
(showing first 3 elements)

Estimated Feature

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
politics
sports &

economy
0.3333

culture

culture

culture

culture

culture

culture

culture

culture

politics sports & culture

0.3333 0.3333
Scores:
start arab leagu  special envoy
0.002386 6.449e-05 0.0001290 0.0004514 3.225e-05
0.001638 1.342e-03 0.0006143 0.0005688 2.730e-04
0.002733 1.171e-04 0.0021083 0.0008980 3.904e-05
crisi kofi annan call member
0.0010963 3.225e-05 3.225e-05 0.001322 0.0009351
0.0013651 1.138e-04 1.138e-04 0.002912 0.0015699
0.0003123 3.904e-05 3.904e-05 0.001484 0.0008980
secur council overcom prevail deadlock
0.001290 0.0001935 1.290e-04 3.225e-05 9.674e-05
0.006143 0.0013879 4.550e-05 6.826e-05 9.101e-05
0.001171 0.0001171 7.809e-05 1.562e-04 3.904e-05
adopt unit posit enabl mediat
0.0001935 0.0003547 0.0009996 2.257e-04 3.225e-05
0.0003640 0.0005005 0.0011149 4.550e-05 2.958e-04
0.0001562 0.0003123 0.0013665 3.904e-05 3.904e-05
effort deliv peac  address press
0.0008706 0.0004192 0.0005159 0.0004837 9.674e-05
0.0012741 0.0002730 0.0036631 0.0006826 4.550e-04
0.0006247 0.0001952 0.0005076 0.0001171 2.733e-04
confer meet send  technic team
0.0004192 0.001967 0.0002902 2.902e-04 0.0003869
0.0009556 0.002707 0.0008418 9.101e-05 0.0003868
0.0005466 0.001054 0.0001562 4.685e-04 0.0081209
prepar talk resolv stay announc
0.0002902 0.0019670 0.0001612 0.0006127 0.0009029
0.0006826 0.0037086 0.0007281 0.0007736 0.0013879
0.0012103 0.0008589 0.0001562 0.0008980 0.0004685
set zone protect grow  number
0.0015478 2.902e-04 0.0007094 0.0015478 0.001999
0.0008418 2.048e-04 0.0008191 0.0007281 0.001479
0.0016398 3.904e-05 0.0006247 0.0008589 0.001796
refuge flee violent  presid bashar
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## economy 0.0006772 0.0001290 9.674e-05 0.002031 3.225e-05
## politics .0008418 0.0002958 2.275e-04 0.010193 9.101e-05
## sports & culture 0.0001171 0.0001171 3.904e-05 0.001523 3.904e-05

o

## al assad fled northern hour
## economy 9.674e-05 3.225e-05 9.674e-05 0.0001612 0.0007739
## politics 1.775e-03 4.550e-05 4.095e-04 0.0005461 0.0007736

## sports & culture 4.685e-04 3.904e-05 1.171e-04 0.0002343 0.0006247

The results above show us each word in our labeled dataset and the probability of this word belonging to one
of 3 labels.

We would now be ready to try to predict the categories of the remaining 399 articles the algorithm hasn’t
seen. Before that, and as we learned earlier, we need to match the words appering in the training and test
datasets because Naive Bayes can only take features into consideration that occur both in the training set
and the test set. We can fix this by passing training_dfm to dfm_match() as a pattern.

# Matches training and test sets
dfmat_matched <- dfm_match(test_dfm, features = featnames(training_dfm))

# Predicting categories in the unseen group of documents
pred_data <- predict(nb, test_dfm)

# Building a confusion matrixz to assess the accuracy, precistion and recall metrics
actual_class <- docvars(test_dfm, "label")

predicted_class <- pred_data

class_table <- table(actual_class, predicted_class)

confusionMatrix(class_table, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class economy politics sports & culture
##  economy 126 8 5
##  politics 9 138 2
##  sports & culture 14 8 89
##

## Overall Statistics

##

## Accuracy : 0.8847

## 95% CI : (0.8492, 0.9143)

#i#t No Information Rate : 0.386

#it P-Value [Acc > NIR] : < 2e-16

#i#

## Kappa : 0.825

##

## Mcnemar's Test P-Value : 0.04765

##

## Statistics by Class:

##

## Class: economy Class: politics

## Sensitivity 0.8456 0.8961

## Specificity 0.9480 0.9551

## Pos Pred Value 0.9065 0.9262

## Neg Pred Value 0.9115 0.9360

## Precision 0.9065 0.9262

## Recall 0.8456 0.8961
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## F1 0.8750 0.9109

## Prevalence 0.3734 0.3860
## Detection Rate 0.3158 0.3459
## Detection Prevalence 0.3484 0.3734
## Balanced Accuracy 0.8968 0.9256
## Class: sports & culture

## Sensitivity 0.9271

## Specificity 0.9274

## Pos Pred Value 0.8018

## Neg Pred Value 0.9757

## Precision 0.8018

## Recall 0.9271

## F1 0.8599

## Prevalence 0.2406

## Detection Rate 0.2231

## Detection Prevalence 0.2782

## Balanced Accuracy 0.9272

Our NB classifier seems to have done pretty well, with measures well above .8. This is a good starting point,
but we want to repeat the process a few times to find the best model for our data. So, we will iterate the
process from randomly splitting our dataset into 2 groups (training and test), to fitting the model and testing
the precision metrics.

We will do this 4 more times. The code chunks below, repeat the code above and just change the seed, so we
get a different sample of articles each time.

# Iteration 2

id_train2 <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id _numeric") <- 1:ndoc(labeled.dfm)
training_dfm <- dfm_subset(labeled.dfm, id_numeric %iny id_train2)
test_dfm <- dfm_subset(labeled.dfm, 'id_numeric %in% id_train2)
nb <- textmodel_nb(training_dfm, docvars(training_dfm, "label"))
summary (nb, 10)

##

## Call:

## textmodel_nb.dfm(x = training dfm, y = docvars(training dfm,
## "label"))

##

## Class Priors:

## (showing first 3 elements)

## economy politics sports & culture

#it 0.3333 0.3333 0.3333

#it

## Estimated Feature Scores:

#it start arab leagu  special envoy
## economy 0.002427 0.0003782 0.0001576 0.0005358 3.152e-05
## politics 0.001577 0.0009461 0.0004731 0.0007884 2.253e-04
## sports & culture 0.002720 0.0001183 0.0020892 0.0008278 3.942e-05
## crisi kofi annan call member
## economy 0.0012293 3.152e-05 3.152e-05 0.001576 0.0008826
## politics 0.0012615 2.253e-05 2.253e-05 0.002703 0.0016220

## sports & culture 0.0002759 3.942e-05 3.942e-05 0.001222 0.0007490
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dfmat_matched <- dfm_match(test_dfm, features = featnames(training dfm))
pred_data <- predict(unb, test_dfm)

actual_class <- docvars(test_dfm, "label")

predicted_class <- pred_data

class_table <- table(actual_class, predicted_class)
confusionMatrix(class_table, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class economy politics sports & culture
##  economy 123 7 5
##  politics 6 128 5
##  sports & culture 19 9 97
##

## Overall Statistics

##

#i# Accuracy : 0.8722

#i# 95% CI : (0.8354, 0.9033)

#it No Information Rate : 0.3709

#it P-Value [Acc > NIR] : < 2e-16

##

#i# Kappa : 0.8077

##

## Mcnemar's Test P-Value : 0.02457

##

## Statistics by Class:

##

## Class: economy Class: politics
## Sensitivity 0.8311 0.8889
## Specificity 0.9522 0.9569
## Pos Pred Value 0.9111 0.9209
## Neg Pred Value 0.9053 0.9385
## Precision 0.9111 0.9209
## Recall 0.8311 0.8889
## F1 0.8693 0.9046
## Prevalence 0.3709 0.3609
## Detection Rate 0.3083 0.3208
## Detection Prevalence 0.3383 0.3484
## Balanced Accuracy 0.8916 0.9229
#i# Class: sports & culture

## Sensitivity 0.9065

## Specificity 0.9041

## Pos Pred Value 0.7760

## Neg Pred Value 0.9635

## Precision 0.7760

## Recall 0.9065

## F1 0.8362

## Prevalence 0.2682

## Detection Rate 0.2431

## Detection Prevalence 0.3133

## Balanced Accuracy 0.9053
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# Iteration 3

id_train3 <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id numeric") <- 1:ndoc(labeled.dfm)
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in’% id_train3)
test_dfm <- dfm_subset(labeled.dfm, !'id_numeric %in% id_train3)
nb <- textmodel_nb(training dfm, docvars(training dfm, "label"))
summary (nb, 10)

##

## Call:

## textmodel_nb.dfm(x = training_dfm, y = docvars(training_ dfm,
## "label"))

##

## Class Priors:

## (showing first 3 elements)

## economy politics sports & culture

#i# 0.3333 0.3333 0.3333

#i#

## Estimated Feature Scores:

## start arab leagu  special envoy
## economy 0.002178 0.0003933 0.0001815 0.0006051 3.025e-05
## politics 0.001799 0.0011915 0.0006565 0.0005836 2.918e-04
## sports & culture 0.002452 0.0001486 0.0018573 0.0006686 3.715e-05
## crisi kofi annan call member
## economy 0.0011799 3.025e-05 3.025e-05 0.001755 0.0009379
## politics 0.0014590 1.459e-04 1.459e-04 0.002796 0.0015319

## sports & culture 0.0002972 3.715e-05 3.715e-05 0.001337 0.0006686

dfmat_matched <- dfm_match(test_dfm, features = featnames(training dfm))
pred_data <- predict(nb, test_dfm)

actual_class <- docvars(test_dfm, "label")

predicted_class <- pred_data

class_table <- table(actual_class, predicted_class)
confusionMatrix(class_table, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class economy politics sports & culture
##  economy 121 4

##  politics 12 154 1
##  sports & culture 15 7 83
##

## Overall Statistics

##

#i# Accuracy : 0.8972

## 95%, CI : (0.8632, 0.9252)

## No Information Rate : 0.4135

## P-Value [Acc > NIR] : < 2.2e-16

##

#H# Kappa : 0.8424

##

## Mcnemar's Test P-Value : 0.0003567
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Statistics by Class:

Class: politics

Class: economy
Sensitivity 0.8176
Specificity 0.9761
Pos Pred Value 0.9528
Neg Pred Value 0.9007
Precision 0.9528
Recall 0.8176
F1 0.8800
Prevalence 0.3709
Detection Rate 0.3033
Detection Prevalence 0.3183
Balanced Accuracy 0.8968

Class: sports & culture
Sensitivity 0.9651
Specificity 0.9297
Pos Pred Value 0.7905
Neg Pred Value 0.9898
Precision 0.7905
Recall 0.9651
F1 0.8691
Prevalence 0.2155
Detection Rate 0.2080
Detection Prevalence 0.2632
Balanced Accuracy 0.9474

# Iteration 4

0.
.9444
.9222
.9526
.9222
.9333
L9277
.4135
.3860
.4185
.9389

O OO O OO OO oOOo

id_train4 <- sample(1:1199, 800, replace = FALSE)

docvars(labeled.dfm, "id numeric") <- 1:ndoc(labeled.dfm)

9333

training_dfm <- dfm_subset(labeled.dfm, id_numeric %in’% id_train4)

test_dfm <- dfm_subset(labeled.dfm,

'id_numeric %in% id_train4)

nb <- textmodel_nb(training dfm, docvars(training dfm, "label"))
summary (nb, 10)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

textmodel_nb.dfm(x = training_dfm, y = docvars(training_ dfm,

"label"))

Class Priors:

(showing first 3 elements)
economy
0.3333

Estimated Feature Scores:

sports & culture 0.002171 0.0001229 2.335e-03 0.0007784
annan
0.0009285 2.995e-05 2.995e-05 0.001498
0.0010912 1.212e-04 1.212e-04 0.002740

start
economy
politics
crisi
economy
politics

0.

3333

arab

kofi

leag
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politics sports & culture
0.3333

special
0.002486 0.0003894 8.986e-05 0.0005391
0.001552 0.0007032 2.425e-04 0.0007759

envoy
2.995e-05
3.152e-04
4.097e-05
member
0.0010483
0.0015761



## sports & culture 0.0004097 4.097e-05 4.097e-05 0.001352 0.0006555

dfmat_matched <- dfm_match(test_dfm, features = featnames(training dfm))
pred_data <- predict(nb, test_dfm)

actual_class <- docvars(test_dfm, "label")

predicted_class <- pred_data

class_table <- table(actual_class, predicted_class)
confusionMatrix(class_table, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class economy politics sports & culture
##  economy 109 4

##  politics 6 158 1
##  sports & culture 21 12 83
##

## Overall Statistics

##

## Accuracy : 0.8772

## 95% CI : (0.8409, 0.9077)

## No Information Rate : 0.4361

#it P-Value [Acc > NIR] : < 2e-16

##

#it Kappa : 0.8122

##

## Mcnemar's Test P-Value : 0.00021

##

## Statistics by Class:

##

## Class: economy Class: politics
## Sensitivity 0.8015 0.9080
## Specificity 0.9658 0.9689
## Pos Pred Value 0.9237 0.9576
## Neg Pred Value 0.9039 0.9316
## Precision 0.9237 0.9576
## Recall 0.8015 0.9080
## F1 0.8583 0.9322
## Prevalence 0.3409 0.4361
## Detection Rate 0.2732 0.3960
## Detection Prevalence 0.2957 0.4135
## Balanced Accuracy 0.8836 0.9385
## Class: sports & culture

## Sensitivity 0.9326

## Specificity 0.8935

## Pos Pred Value 0.7155

## Neg Pred Value 0.9788

## Precision 0.7155

## Recall 0.9326

## F1 0.8098

## Prevalence 0.2231

## Detection Rate 0.2080

## Detection Prevalence 0.2907

## Balanced Accuracy 0.9131
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# Iteration 5

id_trainb <- sample(1:1199, 800, replace = FALSE)
docvars(labeled.dfm, "id numeric") <- 1:ndoc(labeled.dfm)
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in’% id_train5)
test_dfm <- dfm_subset(labeled.dfm, !'id_numeric %in% id_train5)
nb <- textmodel_nb(training dfm, docvars(training dfm, "label"))
summary (nb, 10)

##

## Call:

## textmodel_nb.dfm(x = training_dfm, y = docvars(training_ dfm,
## "label"))

##

## Class Priors:

## (showing first 3 elements)

## economy politics sports & culture

#i# 0.3333 0.3333 0.3333

#i#

## Estimated Feature Scores:

## start arab leagu  special envoy
## economy 0.002566 0.0002782 0.0001236 0.0004327 3.091e-05
## politics 0.001730 0.0010232 0.0005847 0.0007553 3.167e-04
## sports & culture 0.002489 0.0001509 0.0027534 0.0007921 3.772e-05
## crisi kofi annan call member
## economy 0.0012982 3.091e-05 3.091e-05 0.001700 0.0008964
## politics 0.0010476 1.218e-04 1.218e-04 0.002509 0.0015349

## sports & culture 0.0003395 3.772e-05 3.772e-05 0.001546 0.0008675

dfmat_matched <- dfm_match(test_dfm, features = featnames(training dfm))
pred_data <- predict(nb, test_dfm)

actual_class <- docvars(test_dfm, "label")

predicted_class <- pred_data

class_table <- table(actual_class, predicted_class)
confusionMatrix(class_table, mode = "everything")

## Confusion Matrix and Statistics

##

## predicted_class

## actual_class economy politics sports & culture

##  economy 115 2 10
##  politics 7 159 2
##  sports & culture 10 10 84
##

## Overall Statistics

##

#i# Accuracy : 0.8972

## 95%, CI : (0.8632, 0.9252)

## No Information Rate : 0.4286

#it P-Value [Acc > NIR] : < 2e-16

##

## Kappa : 0.8423

##

## Mcnemar's Test P-Value : 0.04377
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#i#
## Statistics by Class:

##

## Class: economy Class: politics
## Sensitivity 0.8712 0.9298
## Specificity 0.9551 0.9605
## Pos Pred Value 0.9055 0.9464
## Neg Pred Value 0.9375 0.9481
## Precision 0.9055 0.9464
## Recall 0.8712 0.9298
## F1 0.8880 0.9381
## Prevalence 0.3308 0.4286
## Detection Rate 0.2882 0.3985
## Detection Prevalence 0.3183 0.4211
## Balanced Accuracy 0.9131 0.9452
## Class: sports & culture

## Sensitivity 0.8750

## Specificity 0.9340

## Pos Pred Value 0.8077

## Neg Pred Value 0.9593

## Precision 0.8077

## Recall 0.8750

## F1 0.8400

## Prevalence 0.2406

## Detection Rate 0.2105

## Detection Prevalence 0.2607

## Balanced Accuracy 0.9045

From the results above, it seems that model 2 is our best fit, so that’s the one we are going to use to predict
the topics in our larger dataset of 2012 articles. Therefore, we need to get the model fitted again. Fortuntely,
because we used set.seed() we can reproduce the findings.

# Reproduce the findings of Iteration 2, to predict labels of the full dataset
training_dfm <- dfm_subset(labeled.dfm, id_numeric %in’% id_train2)

test_dfm <- dfm_subset(labeled.dfm, 'id_numeric %in% id_train2)

nb <- textmodel_nb(training dfm, docvars(training dfm, "label"))

I do not need to re-run all the metrics again, because all I am interested in is the “nb” object which has all
the probabilites that I need to feed into the predict function below.

So, we are ready to go back to the dataframe that we created at the very beginning with all the 20,000+
articles that we haven’t labeled, but want to see labeled. We are going to use the probabilities in nb to get
labels.

# We match the features in the NB fitted model and in our dataset of interest
dfmat_matched <- dfm_match(cctv.dfm, features = featnames(training_dfm))

# We fit the model
tmod <- predict(nb, dfmat_matched)

tmod.labels <- as.data.frame(tmod)
colnames (tmod.labels) <- "labels"

head(tmod.labels, 10)

## labels
## textl politics
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## text2 economy
## text3 economy
## textd politics
## textd sports & culture
## text6 sports & culture

## text7 economy
## text8 economy
## text9 economy
## textlO economy

table(tmod.labels$labels)/length(tmod) # Proportion of topics in our target df

##
## economy politics sports & culture
## 0.4390263 0.2014683 0.3595054

The results we find here would need to be validated by hand coding a sample of these articles and making
sure that the labels actually match the content of the article.
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